精英家教网 > 高中数学 > 题目详情
18.下列说法正确的是(  )
(1)已知等比数列{an},则“数列{an}单调递增”是“数列{an}的公比q>1”的充分不必要条件;
(2)二项式${({2x+\frac{1}{{\sqrt{x}}}})^5}$的展开式按一定次序排列,则无理项互不相邻的概率是$\frac{1}{5}$;
(3)已知$S=\int_0^{\frac{1}{2}}{\sqrt{\frac{1}{4}-{x^2}}}dx$,则$S=\frac{π}{16}$;
(4)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为40.
A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)

分析 (1),等比数列{an}单调递增时⇒公比q>1且首项a1>0,或公比0<q>1且首项a1<0;
(2),根据二项式${({2x+\frac{1}{{\sqrt{x}}}})^5}$的展开式的通项公式可得展开式中无理项项数,再用古典概型概率计算公式可求;
(3),$S=\int_0^{\frac{1}{2}}{\sqrt{\frac{1}{4}-{x^2}}}dx$表示圆x2+y2=$\frac{1}{4}$(y≥0,0≤x≤$\frac{1}{2}$)的圆的面积;
(4),1000÷40=25.

解答 解:对于(1),等比数列{an}单调递增时⇒公比q>1且首项a1>0,或公比0<q<1且首项a1<0,故错;
对于(2),二项式${({2x+\frac{1}{{\sqrt{x}}}})^5}$的展开式的通项公式为:Tr+1=${C}_{5}^{r}(2)^{5-r}{x}^{5-\frac{3}{2}r}$当r=0、2、4时为有理项,即展开式中共6项,无理项有3项,按一定次序排列,则无理项互不相邻的概率是$\frac{{{A}_{3}^{3}A}_{4}^{3}}{{A}_{6}^{6}}$=$\frac{1}{5}$,故正确;
对于(3),$S=\int_0^{\frac{1}{2}}{\sqrt{\frac{1}{4}-{x^2}}}dx$表示圆x2+y2=$\frac{1}{4}$(y≥0,0≤x≤$\frac{1}{2}$)的圆的面积,则$S=\frac{π}{16}$,故正确;
对于(4),为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为25,故错.
故选:B.

点评 本题考查了命题真假的判定,涉及到了大量的基础知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知对任意x1、x2∈(0,+∞)且x1<x2,幂函数$f(x)={x^{-\frac{p^2}{2}+p+\frac{3}{2}}}$(p∈Z),满足f(x1)<f(x2),并且对任意的x∈R,f(x)-f(-x)=0.
(1)求p的值,并写出函数f(x)的解析式;
(2)对于(1)中求得的函数f(x),设g(x)=-qf(x)+(2q-1)x+1,问:是否存在负实数q,使得g(x)在(-∞,-4)上是减函数,且在[-4,+∞)上是增函数?若存在,求出q的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设$a=\frac{1}{{\sqrt{2}}}({sin56°-cos56°})$,b=cos50°•cos128°+cos40°•cos38°,$c=\frac{1}{2}({cos80°-2{{cos}^2}50°+1})$,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,则输出的结果为(  )
A.7B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合P=(-∞,0]∪(3,+∞),Q={0,1,2,3},则(∁RP)∩Q=(  )
A.{0,1}B.{0,1,2}C.{1,2,3}D.{x|0≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.正三棱柱ABC-A1B1C1底边长为2,E,F分别为BB1,AB的中点.
( I)已知M为线段B1A1上的点,且B1A1=4B1M,求证:EM∥面A1FC;
( II)若二面角E-A1C-F所成角的余弦值为$\frac{{2\sqrt{7}}}{7}$,求AA1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若角α满足sinα+2cosα=0,则sin2α的值等于-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆A:(x+1)2+y2=8,动圆M经过点B(1,0),且与圆A相切,O为坐标原点.
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)直线l与曲线C相切于点M,且l与x轴、y轴分别交于P、Q两点,若$\overrightarrow{PM}$=λ$\overrightarrow{MQ}$,且λ∈[$\frac{1}{2}$,2],求△OPQ面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,△A′O′B′表示水平放置△AOB的直观图,B′在x′轴上,A′O′和x′轴垂直,且A′O′=8,则△AOB的边OB上的高为16$\sqrt{2}$.

查看答案和解析>>

同步练习册答案