精英家教网 > 高中数学 > 题目详情

【题目】某电视台为宣传本市,随机对本市内岁的人群抽取了人,回答问题本市内著名旅游景点有哪些,统计结果如图表所示.

组号

分组

回答正确的人数

回答正确的人数占本组的频率

1

[15,25)

a

0.5

2

[25,35)

18

x

3

[35,45)

b

0.9

4

[45,55)

9

0.36

5

[55,65]

3

y

(1)分别求出的值;

(2)根据频率分布直方图估计这组数据的中位数(保留小数点后两位)和平均数;

(3)若第1组回答正确的人员中,有2名女性,其余为男性,现从中随机抽取2人,求至少抽中1名女性的概率.

【答案】(1)(2)中位数为41.67,平均数为41.5(3).

【解析】

1)由频率表中第4组数据可知,第4组的人数为25,再结合频率分布直方图可知n100,由此有求出abxy

2)设中位数为x,由频率分布直方图可知x[3545),且有0.010×10+0.020×10+x35)×0.03005,得x41.67,由此能估计这组数据的中位数和平均数;

3)第一组中回答正确的人员中有3名男性,2名女性,男性分别记为abc,女性分别记为12,先从5人中随机抽取2人,利用列举法能求出至少抽中一名女性的概率.

1)由频率表中第4组数据可知,第4组的人数为25

再结合频率分布直方图可知n100

a100×(0.010×10)×0.55

b100×(0.030×10)×927

x0.9

y0.2

(2) 设中位数为x,由频率分布直方图可知x[3545),

且有0.010×10+0.020×10+x35)×0.03005

解得x41.67

故估计这组数据的中位数为41.67

估计这组数据的平均数为:

20×0.010×10+30×0.020×10+40×0.030×10+50×0.025×10+60×0.030×1041.5

(3)(1),则第一组中回答正确的人员中有3名男性,2名女性.男性分别记为,女性分别记为.

先从5人中随机抽取2,共有,10个基本事件 .

至少抽中一名女性为事件,共有7个事件. .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】的三边,求证:方程有公共根的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市举行中学生诗词大赛,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30150]内,其频率分布直方图如图.则获得复赛资格的人数为()

A.640B.520C.280D.240

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆

)过点的直线被圆截得的弦长为8,求直线的方程;

)当取何值时,直线与圆相交的弦长最短,并求出最短弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列各式的符号:

sin 145°cos(210°);②sincostan 5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。

(1) ,求 tanθ的值;

(2) ,且 θ (0,),求 θ的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求此函数对应的曲线在处的切线方程.

)求函数的单调区间.

)对,不等式恒成立,求的取值范围.

【答案】;)见解析;)当时, ,当

【解析】试题分析:(1利用导数的意义,求得切线方程为;(2求导得通过 分类讨论得到单调区间;(3分离参数法,得到,通过求导,得

试题解析:

)当时,

∴切线方程

,则

时, 上为增函数.

上为减函数,

时, 上为增函数,

时, 上为单调递增,

上单调递减.

)当时,

时,由

,对恒成立.

,则

极小

点睛:本题考查导数在函数综合题型中的应用。含参的函数单调性讨论,考查学生的分类讨论能力,本题中,结合导函数的形式,分类讨论;含参的恒成立问题,一般采取分离参数法,解决恒成立。

型】解答
束】
20

【题目】已知集合,集合且满足:

恰有一个成立.对于定义

)若 ,求的值及的最大值.

)取 中任意删去两个数,即剩下的个数的和为,求证:

)对于满足的每一个集合,集合中是否都存在三个不同的元素 ,使得恒成立,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明函数为奇函数;

(2)判断函数的单调性(无需证明),并求函数的值域;

(3)是否存在实数,使得的最大值为?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评.同时也为公司赢得丰厚的利润,该公司2013年至2019年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关)

年份

2013

2014

2015

2016

2017

2018

2019

年份代号

1

2

3

4

5

6

7

年利润(单位:亿元)

29

33

36

44

48

52

59

1)求关于的线性回归方程,并预测该公司2020年的年利润;

2)当统计表中某年年利润的实际值大于由(1)中线性回归方程计算出该年利润的估计值时,称该年为A级利润年,否则称为B级利润年.现从2015年至2019年这5年中随机抽取2年,求恰有1年为A级利润年的概率.

参考公式:

查看答案和解析>>

同步练习册答案