精英家教网 > 高中数学 > 题目详情
1.求等比数列1,-$\frac{1}{2}$,$\frac{1}{4}$,…的通项公式an

分析 由题意可得数列的首项和公比,可得通项公式.

解答 解:由题意可得等比数列的首项a1=1,公比q=$-\frac{1}{2}$,
∴通项公式an=a1qn-1=1×(-$\frac{1}{2}$)n-1=(-$\frac{1}{2}$)n-1

点评 本题考查等比数列的通项公式,得出数列的首项和公比是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知:x>0,y>0,x+2$\sqrt{xy}$-15y=0,求$\frac{x+y}{x+\sqrt{xy}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆上有两点A(1,-1),B(2,3),且圆心在直线2x-y-1=1上,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求值:
(1)sin460°•sin(-160°)+cos560°•cos(-280°);
(2)sin(-15°).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.化简下列各式:
(1)$\frac{\sqrt{1-2cos5°sin5°}}{cos5°-\sqrt{1-co{s}^{2}5°}}$;
(2)($\frac{1}{sinα}$+$\frac{1}{tanα}$)(1-cosα).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知tanα=2,求$\frac{1}{4}$sin2α+$\frac{1}{3}$sinαcosα+$\frac{1}{2}$cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系中,以x轴正半轴为始边的两锐角α,β的终边与单位圆分别交于A、B两点,已知:xA=$\frac{\sqrt{10}}{10}$,xB=$\frac{2}{5}$$\sqrt{5}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线y=kx-2k-1与直线x+2y-4=0的交点位于第一象限,则k的取值范围是(  )
A.-$\frac{3}{2}$<k<$\frac{1}{2}$B.k>$\frac{1}{2}$或k<-$\frac{3}{2}$C.k≥$\frac{1}{2}$或k≤-$\frac{3}{2}$D.k>-$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,扇形OPQ的半径为2,圆心角为$\frac{π}{3}$,C是扇形弧上的动点,四边形ABCD是扇形的内接矩形,则SABCD的最大值是(  )
A.$\frac{2\sqrt{3}}{3}$B.2$\sqrt{3}$C.$\sqrt{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案