为了寻找马航残骸,我国“雪龙号”科考船于2014年3月26日从港口出发,沿北偏东角的射线方向航行,而在港口北偏东角的方向上有一个给科考船补给物资的小岛,海里,且.现指挥部需要紧急征调位于港口正东海里的处的补给船,速往小岛装上补给物资供给科考船.该船沿方向全速追赶科考船,并在处相遇.经测算当两船运行的航线与海岸线围成的三角形的面积最小时,这种补给方案最优.
(1)求关于的函数关系式;
(2)应征调位于港口正东多少海里处的补给船只,补给方案最优?
(1);(2)1400.
解析试题分析:(1)本题已知条件可以理解为是固定的,点也是不变,直线过点,要求面积的最小值,根据已知条件,我们用解析法来解题,以为坐标原点,向东方向为正半轴,向北方向为轴正半轴,建立直角坐标系,则可得直线的方程为,点坐标为,又有点坐标为,可得直线方程,它与直线的交点的坐标可解得,而,这样要求的表达式就可得;(2)在(1)基础上,,其最小值求法,把分式的分子分母同时除以,得,分母是关于的二次函数,最值易求.
试题解析:(1)以O点为原点,正北的方向为y轴正方向建立直角坐标系, (1分)
则直线OZ的方程为,设点A(x0,y0),则,,即A(900,600), (3分)
又B(m,0),则直线AB的方程为:, (4分)
由此得到C点坐标为:, (6分)
(8分)
(2)由(1)知 (10分)
(12分)
所以当,即时,最小,
(或令,则
,当且仅当时,最小)
∴征调海里处的船只时,补给方案最优. (14分)
考点:解析法解应用题.
科目:高中数学 来源: 题型:解答题
请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,在上是被切去的等腰直角三角形斜边的两个端点,设.
(1)若广告商要求包装盒侧面积最大,试问应取何值?
(2)若广告商要求包装盒容积最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数常数)满足.
(1)求出的值,并就常数的不同取值讨论函数奇偶性;
(2)若在区间上单调递减,求的最小值;
(3)在(2)的条件下,当取最小值时,证明:恰有一个零点且存在递增的正整数数列,使得成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2011•湖北)(1)已知函数f(x)=lnx﹣x+1,x∈(0,+∞),求函数f(x)的最大值;
(2)设a1,b1(k=1,2…,n)均为正数,证明:
①若a1b1+a2b2+…anbn≤b1+b2+…bn,则…≤1;
②若b1+b2+…bn=1,则≤…≤b12+b22+…+bn2.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设关于x函数 其中0
将f(x)的最小值m表示成a的函数m=g(a);
是否存在实数a,使f(x)>0在上恒成立?
是否存在实数a,使函数f(x) 在上单调递增?若存在,写出所有的a组成的集合;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧、弧以及两条线段和围成的封闭图形.花坛设计周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米(),圆心角为弧度.
(1)求关于的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当为何值时,取得最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于函数,若在定义域存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(2)设是定义在上的“局部奇函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=lg(ax-bx)(a>1>b>0).
(1)求函数y=f(x)的定义域;
(2)在函数y=f(x)的图象上是否存在不同的两点,使过此两点的直线平行于x轴;
(3)当a、b满足什么关系时,f(x)在区间上恒取正值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com