精英家教网 > 高中数学 > 题目详情

【题目】如图,在Rt中, ,点分别在线段上,且,将沿折起到的位置,使得二面角的大小为.

(1)求证:

(2)当点为线段的靠近点的三等分点时,求与平面 所成角的正弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)由等腰三角形的性质可得,翻折后垂直关系没变,仍有,平面 ,从而得; (2) 二面角的平面角,由余弦定理得,由勾股定理可得,两两垂直,以为原点,所在直线为轴,所在直线为轴,建立空间直角坐标系,求出平面的法向量与的方向向量,利用空间向量夹角余弦公式可得结果.

试题解析:(1)

,翻折后垂直关系没变,仍有,

.

(2) , 二面角的平面角,

,又,由余弦定理得,

,,两两垂直.

为原点,所在直线为轴,所在直线为轴,建立如图直角坐标系.

设平面的法向量

可得

.

PC与平面PEF所成的角的正弦值为 .

【方法点晴】本题主要考查利用空间向量求线面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线y=x+b与函数f(x)=ln x的图象交于两个不同的点A,B,其横坐标分别为x1,x2,x1<x2.

(1)b的取值范围;

(2)x2≥2,证明x1·<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.

)求k的取值范围;

)设CW上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为过点的直线的参数方程为为参数),直线与曲线相交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2),的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的左、右焦点分别为离心率为,两准线之间的距离为8,在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线

(1)求椭圆的标准方程;

(2)若直线的交点在椭圆求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)试讨论的单调性;

(2)若有两个极值点 ,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切.

(1)若直线与圆交于两点,求

(2)设圆轴的负半轴的交点为,过点作两条斜率分别为的直线交圆两点,且,试证明直线恒过一定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.

学生序号

1

2

3

4

5

6

7

8

9

10

立定跳远(单位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳绳(单位:次)

63

a

75

60

63

72

70

a1

b

65

在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则

A2号学生进入30秒跳绳决赛

B5号学生进入30秒跳绳决赛

C8号学生进入30秒跳绳决赛

D9号学生进入30秒跳绳决赛

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线Cρsin2θ2acos θ(a>0),过点P(2,-4)的直线l的参数方程为,直线l与曲线C分别交于MN两点.若|PM||MN||PN|成等比数列,则a的值为________.

查看答案和解析>>

同步练习册答案