精英家教网 > 高中数学 > 题目详情
15.已知cosα=-$\frac{3}{5}$,π<α<$\frac{3π}{2}$,则sin2α=$\frac{24}{25}$.

分析 由条件利用同角三角函数的基本关系、二倍角的正弦公式求得sin2α的值.

解答 解:∵cosα=-$\frac{3}{5}$,π<α<$\frac{3π}{2}$,∴sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{4}{5}$,
则sin2α=2sinαcosα=$\frac{24}{25}$,
故答案为:$\frac{24}{25}$.

点评 本题主要考查同角三角函数的基本关系、二倍角的正弦公式,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某林场的森林蓄积量每年比上一年增长10%,问经过10年可以长到原来的多少倍?(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=loga$\frac{x-5}{x+5}$(a>0且a≠1),设g(x)=loga(x-3),若方程f(x)-1=g(x)有实根,则a的取值范围是(0,$\frac{3-\sqrt{5}}{16}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线y=kx+1与曲线y=ax3+lnx+b相切于点(1,5),则a-b=(  )
A.-3B.2C.3D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=|lnx|,g(x)=$\left\{\begin{array}{l}{0,0<x≤1}\\{|{x}^{2}-4|-2,x>1}\end{array}\right.$,则方程f(x)+g(x)=1实根的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=$\left\{\begin{array}{l}{-x,x>0}\\{{x}^{2},x<0}\end{array}\right.$,则f[f(x)]=(  )
A.$\left\{\begin{array}{l}{{x}^{2},x>0}\\{-{x}^{2},x<0}\end{array}\right.$B.$\left\{\begin{array}{l}{-{x}^{2},x>0}\\{{x}^{2},x<0}\end{array}\right.$
C.$\left\{\begin{array}{l}{-x,x>0}\\{{x}^{2},x<0}\end{array}\right.$D.$\left\{\begin{array}{l}{-x,x<0}\\{{x}^{2},x>0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=loga(x2+$\frac{3}{2}$x)(a>0,a≠1)在区间($\frac{1}{2}$,+∞)内恒有f(x)>0,则f(x)的单调增区间为(  )
A.(0,+∞)B.(2,+∞)C.(1,+∞)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{2x+6}{x+a}$在区间(-2,+∞)上是减函数,则实数a的取值范围是[2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知角α的终边经过点P(3,4),则角α的正切值是(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案