精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数).

(1)将 的方程化为普通方程,并说明它们分别表示什么曲线?

(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点上,点的中点,求点到直线距离的最小值.

【答案】(1)表示以为圆心,1为半径的圆, 表示焦点在轴上的椭圆;(2).

【解析】试题分析:(1)分别将曲线的参数方程利用平方法消去参数,即可得到 的方程化为普通方程,进而得到它们分别表示什么曲线;(2),利用点到直线距离公式可得到直线的距离,利用辅助角公式以及三角函数的有界性可得结果.

试题解析:(1)的普通方程为,它表示以为圆心,1为半径的圆,

的普通方程为,它表示中心在原点,焦点在轴上的椭圆.

(2)由已知得,设,则

直线

到直线的距离

所以,即的距离的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)若函数上单调递增,求的取值范围;

(2)当时,设函数的最小值为,求证:

(3)求证:对任意的正整数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面为平行四边形,且,, 分别为中点,过作平面分别与线段相交于点.

(Ⅰ)在图中作出平面使面 (不要求证明);

(II)若,在(Ⅰ)的条件下求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数的最小正周期为

(1)求的单调增区间;

(2)方程;在上有且只有一个解,求实数n的取值范围;

(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2R,使得++m-)+1>fx2)成立.若存在,求m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;

(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于,设线段的长分别为,证明是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数的图像过点,且对于任意实数,不等式恒成立

(1)求的表达式;

(2)设,若上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】燕山公园计划改造一块四边形区域铺设草坪,其中百米,百米,,草坪内需要规划4条人行道以及两条排水沟,其中分别为边的中点.

1)若,求排水沟的长;

2)当变化时,求条人行道总长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行购物抽奖活动,抽奖箱中放有编号分别为的五个小球.小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽到的小球编号为,则获得奖金元;若抽到的小球编号为偶数,则获得奖金元;若抽到其余编号的小球,则不中奖.现某顾客依次有放回的抽奖两次.

(1)求该顾客两次抽奖后都没有中奖的概率;

(2)求该顾客两次抽奖后获得奖金之和为元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午800-1000间各自的点击量:

甲:732458726438667020415567825

乙:12372155442614519671364214

1)请用茎叶图表示上面的数据.

2)甲网站点击量在[1040]间的频率是多少?

3)甲、乙两个网站哪个更受欢迎?并说明理由.

查看答案和解析>>

同步练习册答案