【题目】在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).
(1)将, 的方程化为普通方程,并说明它们分别表示什么曲线?
(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点在上,点为的中点,求点到直线距离的最小值.
科目:高中数学 来源: 题型:
【题目】已知四棱锥的底面为平行四边形,且,, 分别为中点,过作平面分别与线段相交于点.
(Ⅰ)在图中作出平面使面‖ (不要求证明);
(II)若,在(Ⅰ)的条件下求多面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量,,,,函数,的最小正周期为.
(1)求的单调增区间;
(2)方程;在上有且只有一个解,求实数n的取值范围;
(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;
(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于和,设线段的长分别为,证明是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】燕山公园计划改造一块四边形区域铺设草坪,其中百米,百米,,,草坪内需要规划4条人行道以及两条排水沟,其中分别为边的中点.
(1)若,求排水沟的长;
(2)当变化时,求条人行道总长度的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行购物抽奖活动,抽奖箱中放有编号分别为的五个小球.小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽到的小球编号为,则获得奖金元;若抽到的小球编号为偶数,则获得奖金元;若抽到其余编号的小球,则不中奖.现某顾客依次有放回的抽奖两次.
(1)求该顾客两次抽奖后都没有中奖的概率;
(2)求该顾客两次抽奖后获得奖金之和为元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量:
甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25
乙:12,37,21,5,54,42,61,45,19,6,71,36,42,14
(1)请用茎叶图表示上面的数据.
(2)甲网站点击量在[10,40]间的频率是多少?
(3)甲、乙两个网站哪个更受欢迎?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com