精英家教网 > 高中数学 > 题目详情

【题目】已知点是圆上任意一点,点与点关于原点对称,线段的垂直平分线分别与交于两点.

(1)求点的轨迹的方程;

(2)过点的动直线与点的轨迹交于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出点的坐标;若不存在,请说明理由.

【答案】(1)(2)

【解析】试题分析:(1)本问考查曲线轨迹方程的求法,画出图形分析,根据垂直平分线的性质可知,再根据,于是得到所以点的轨迹为以为焦点的椭圆,可以求出轨迹方程;(2)首先考虑当直线斜率存在时,方程可设为,设,联立直线与椭圆方程,消去y,得到关于x的一元二次方程后,列出,假设在轴上是否存在定点,使以为直径的圆恒过这个点,则于是经计算可以求出m的值,再检验当斜率不存在时也符合上面求出的值.

试题解析:(I)由题意得

的轨迹为以为焦点的椭圆

的轨迹的方程为

(II)直线的方程可设为,设

联立可得

由求根公式化简整理得

假设在轴上是否存在定点,使以为直径的圆恒过这个点,则

求得

因此,在轴上存在定点,使以为直径的圆恒过这个点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如表:

停靠时间

2.5

3

3.5

4

4.5

5

5.5

6

轮船数量

12

12

17

20

15

13

8

3

(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为小时,求的值;

(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

① “若,则有实根”的逆否命题为真命题;

②命题“”为真命题的一个充分不必要条件是

③命题“,使得”的否定是真命题;

④命题函数为偶函数,命题函数上为增函数,

为真命题.

其中,正确的命题是( )

A. ①② B. ①③ C. ②③ D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=lnx-x+a+1.

(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范围;

(2)求证:在(1)的条件下,当x>1时, x2+ax-a>xlnx+成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x(ln xax)有两个极值点,则实数a的取值范围是(  )

A. (0) B.

C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BEEFFC=1,BC=2,AC=3.

(1)求证:BF⊥平面ACFD

(2)求二面角B-AD-F的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左焦点为,过点的直线交椭圆于两点,的最大值是的最小值是,且满足.

(1)求椭圆的离心率;

(2)设线段的中点为,线段的垂直平分线与轴、轴分别交于两点,是坐标原点,记的面积为的面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角ABC所对边分别为abc向量

1)求A的大小

2)若,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面为矩形,ABBC=1,EF分别是ABPC的中点,DEPA.

(1)求证:EF∥平面PAD

(2)求证:平面PAC⊥平面PDE.

查看答案和解析>>

同步练习册答案