【题目】在正三棱锥中,是的中点,且,底面边长,则正三棱锥的外接球的表面积为( )
A.B.C.D.
【答案】B
【解析】
试题根据三棱锥为正三棱锥,可证明出AC⊥SB,结合SB⊥AM,得到SB⊥平面SAC,因此可得SA、SB、SC三条侧棱两两互相垂直.最后利用公式求出外接圆的直径,结合球的表面积公式,可得正三棱锥S-ABC的外接球的表面积.
取AC中点,连接BN、SN,∵N为AC中点,SA=SC,∴AC⊥SN,
同理AC⊥BN,∵SN∩BN=N,∴AC⊥平面SBN,
∵SB平面SBN,∴AC⊥SB,∵SB⊥AM且AC∩AM=A,
∴SB⊥平面SACSB⊥SA且SB⊥AC,
∵三棱锥S-ABC是正三棱锥,
∴SA、SB、SC三条侧棱两两互相垂直.
∵底面边长∴侧棱SA=2,
∴正三棱锥S-ABC的外接球的直径为:,
∴正三棱锥S-ABC的外接球的表面积是,故选B.
科目:高中数学 来源: 题型:
【题目】如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设,并在公路北侧建造边长为的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且.
(1)求关于的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:取何值时,该公司建设中转站围墙和两条道路总造价M最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的左、右焦点分别为、,点为椭圆上任意一点,关于原点的对称点为,有,且的最大值.
(1)求椭圆的标准方程;
(2)若是关于轴的对称点,设点,连接与椭圆相交于点,直线与轴相交于点,试求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为及以上的花苗为优质花苗.
求图中的值,并求综合评分的中位数.
用样本估计总体,以频率作为概率,若在两块试验地随机抽取棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
填写下面的列联表,并判断是否有的把握认为优质花苗与培育方法有关.
附:下面的临界值表仅供参考.
(参考公式:,其中.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在高中学习过程中,同学们经常这样说:“数学物理不分家,如果物理成绩好,那么学习数学就没什么问题。”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论。现从该班随机抽取5位学生在一次考试中的数学和物理成绩,如下表:
(1)求数学成绩y对物理成绩x的线性回归方程。若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这5位学生中随机抽取2位参加一项知识竞赛,求选中的学生的数学成绩至少有一位高于120分的概率。(参考公式: 参考数据: )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,过坐标原点的直线交于,两点,点在第一象限,轴,垂足为.连结并延长交于点.
(1)设到直线的距离为,求的取值范围;
(2)求面积的最大值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为1,2…,6)的学生给父母洗脚的百分比y%进行了调查统计,绘制得到下面的散点图.
(1)由散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)建立y关于x的回归方程,并据此预计该校学生升入中学的第一年(年级代码为7)给父母洗脚的百分比.
附注:参考数据:
参考公式:相关系数,若r>0.95,则y与x的线性相关程度相当高,可用线性回归模型拟合y与x的关系.回归方程中斜率与截距的最小二乘估计公式分别为= ,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为1,2…,6)的学生给父母洗脚的百分比y%进行了调查统计,绘制得到下面的散点图.
(1)由散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)建立y关于x的回归方程,并据此预计该校学生升入中学的第一年(年级代码为7)给父母洗脚的百分比.
附注:参考数据:
参考公式:相关系数,若r>0.95,则y与x的线性相关程度相当高,可用线性回归模型拟合y与x的关系.回归方程中斜率与截距的最小二乘估计公式分别为= ,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,单调递增,,若对任意,存在,使得成立,则称是在上的“追逐函数”.若,则下列四个命题:①是在上的“追逐函数”;②若是在上的“追逐函数”,则;③是在上的“追逐函数”;④当时,存在,使得是在上的“追逐函数”.其中正确命题的个数为( )
A. ①③B. ②④C. ①④D. ②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com