精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线y=1与函数y=3sin x(0≤x≤10)的图象所有交点的横坐标之和为

【答案】30
【解析】解:∵y=3sin x的周期T= =4,
∴当0≤x≤10时,其图象如下:

由图知,直线y=1与正弦曲线y=3sin x(0≤x≤10)相交于A、B、C、D、E、F6个点,其横坐标如图所示,
则x1+x2=2,x3+x4=10,x5+x6=18,
∴所有交点的横坐标之和为2+10+18=30.
所以答案是:30.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,平面平面四边形为直角梯形, 四边形为等腰梯形,

(Ⅰ)若梯形内有一点,使得平面,求点的轨迹;

(Ⅱ)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自点A(-33)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为椭圆的左焦点,直线被椭圆截得弦长为

(1)求椭圆的方程;

(2)圆与椭圆交于两点, 为线段上任意一点,直线交椭圆两点为圆的直径,且直线的斜率大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中新网2016年12月19日电根据预报,今天开始雾霾范围将进一步扩大 日夜间至日,时段部分地区浓度值会超过微克/立方米. 而此轮雾最严的时段将有包括京津冀、山西、陕西、河南等个省市在内的地区被雾笼罩. 是指大气中直径小于或等于微米的顆粒物也称为可人肺粒物. 日均值在微克/立方米以下空气质克/立方米克/立方米之间空气质为二级微克/立方米以上空气质为超标.某地区在2016年12月19日至28日每天的监测数据的茎叶图如下:

(1)求出这些数据的中位数与极差;

(2)从所给的空气质不超标的天的数据中任意抽取天的数据,求这天中恰好有空气质为一级另一天空气质量为二级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:xA,且A={x|a﹣1xa+1},命题q:xB,且B={x|x2﹣4x+3≥0}

(Ⅰ)若A∩B=A∪B=R,求实数a的值;

(Ⅱ)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:
①若 <0,则 + >2;
②若a>b,则am2>bm2
③在△ABC中,若sinA=sinB,则A=B;
④任意x∈R,都有ax2﹣ax+1≥0,则0<a≤4.
其中是真命题的有(
A.①②
B.②③
C.①③
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议()不改变车票价格,减少支出费用;建议()不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则

A. ①反映了建议(Ⅱ),③反映了建议(Ⅰ)

B. ①反映了建议(Ⅰ),③反映了建议(Ⅱ)

C. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)

D. ④反映了建议(Ⅰ),②反映了建议(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市统计局就某地居民的月收入调查了10 000人,并根据所得数据画出样本的频率分布直方图如图所示.(每个分组包括左端点,不包括右端点,如第一组表示[1 000,1 500)。

(1)求居民收入在[2000,3 000)的频率;

(2)根据频率分布直方图算出样本数据的中位数;

3为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2 000,3 000)的这段应抽取多少人?

查看答案和解析>>

同步练习册答案