【题目】如图,四边形与均为菱形,,且.
(1)求证:平面;
(2)求证:平面;
(3)求二面角的余弦值.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】
试题分析:(1)由线面垂直的判定定理得到结论;(2)通过证明线线平行,得到线面平行;(3)建立空间直角坐标系,求出平面的法向量,易知面,所以面的法向量为,再求出它们的夹角的余弦值.
试题解析:(1)证明:设与相交于点,连接,因为四边形为菱形,所以,且为中点,又,所以,
因为,所以平面.
(2)证明:因为四边形与均为菱形,
所以,,所以平面平面,
又平面,所以平面.
(3)解:因为四边形为菱形,且,所以△为等边三角形,
因为为中点,所以,故平面.
由,,两两垂直,建立如图所示的空间直角坐标系.
设,因为四边形为菱形,,则,所以,,
所以,,,,.
所以,.
设平面的法向量,则有所以
取,得.
易知平面的法向量为.
由二面角是锐角,得,
所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】用数字0、2、3、4、6按下列要求组数、计算:
(1)能组成多少个没有重复数字的三位数?
(2)可以组成多少个可以被3整除的没有重复数字的三位数?
(3)求即144的所有正约数的和.
(注:每小题结果都写成数据形式)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.
(Ⅰ)求底面积,并用含x的表达式表示池壁面积;
(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国魏人刘徽,自撰《海岛算经》,专论测高望远。其中有一题:今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从后表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高及去表各几何? 译文如下:要测量海岛上一座山峰的高度,立两根高均为丈的标杆和,前后标杆相距步,使后标杆杆脚与前标杆杆脚与山峰脚在同一直线上,从前标杆杆脚退行步到,人眼著地观测到岛峰,、、三点共线,从后标杆杆脚退行步到,人眼著地观测到岛峰,、、三点也共线,问岛峰的高度 步. (古制:步=尺,里=丈=尺=步)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:区域A是正方形OABC(含边界),区域B是三角形ABC(含边界)。
(Ⅰ)向区域A随机抛掷一粒黄豆,求黄豆落在区域B的概率;
(Ⅱ)若x,y分别表示甲、乙两人各掷一次骰子所得的点数,求点(x,y)落在区域B的概率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为短轴顶点在圆上.
(Ⅰ)求椭圆方程;
(Ⅱ)已知点,若斜率为1的直线与椭圆相交于两点,试探究以为底边的等腰三角形是否存在?若存在,求出直线的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心是坐标原点,焦点在轴上,离心率为,又椭圆上任一点到两焦点的距离和为.过右焦点与轴不垂直的直线交椭圆于,两点.
(1)求椭圆的方程;
(2)在线段上是否存在点,使得?若存在,求出的取值范围;若不存在,请
说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com