一束光线从点A(-1,0)出发,经过直线l:2x-y+3=0上的一点D反射后,经过点B(1,0).
(1)求以A,B为焦点且经过点D的椭圆C的方程;
(2)过点B(1,0)作直线l交椭圆C于P、Q两点,以AP、AQ为邻边作平行四边形APRQ,求对角线AR长度的取值范围.
【答案】
分析:(1)先求出点A(-1,0)关于直线l:2x-y+3=0的对称点为
,由题设知椭圆长轴长等于|A′B|,从而求出a,b,c,由此能求出椭圆方程.
(2)设直线l:x=my+1,(m∈R),P(x
1,y
1),Q(x
2,y
2),联立方程组
,消去x得:(my+1)
2+2y
2=2,然后利用韦达定理和两点间距离公式,能够求出对角线AR长度的取值范围.
解答:解:(1)点A(-1,0)关于直线l:2x-y+3=0的对称点为
,
∴
,c=1,∴b
2=1,
所以所求椭圆方程为:
.
(2)设直线l:x=my+1,(m∈R),P(x
1,y
1),Q(x
2,y
2)
联立方程组
,
消去x得:(my+1)
2+2y
2=2,
即(m
2+2)y
2+2my-1=0,
∴
∵
∴
令
,
则
,
∴
.
点评:本题考查椭圆方程的求法和直线与圆锥曲线的位置关系的应用,解题时要认真审题,仔细解答,注意韦达定理、两点间距离公式的应用,合理地进行等价转化.