精英家教网 > 高中数学 > 题目详情

【题目】如图,ABC中,ABBC,∠ACB60°DAC中点,ABD沿BD翻折过程中,直线AB与直线BC所成的最大角、最小角分别记为α1β1,直线AD与直线BC所成最大角、最小角分别记为α2β2,则有(

A.α1α2β1β2B.α1α2β1β2

C.α1α2β1β2D.α1α2β1β2

【答案】D

【解析】

翻折到180°时,ABBC所成角最小,β130°ADBC所成角最小,β2,翻折时,ABBC所成角最大,可知α190°,翻折过程中,可知AD的投影可与BC垂直,从而ADBC所成最大角α290°,推导出α190°β130°α290°β20°.

翻折到180°时,ABBC所成角最小,可知β130°

ADBC所成角最小,β2

翻折时,ABBC所成角最大,可知α190°

翻折过程中,可知AD的投影可与BC垂直,

所以ADBC所成最大角α290°

所以α190°β130°α290°β20°.

α1α2β1β2.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx|2x3|gx|2x+a+b|.

1)解不等式fxx2

2)当a0b0时,若Fxfx+gx)的值域为[5+∞),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“2019曹娥江国际马拉松在上虞举行,现要选派5名志愿者服务于四个不同的运动员救助点,每个救助点至少分配1人,若志愿者甲要求不到A救助点,则不同的分派方案有________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)讨论的单调性;

)存在正实数k使得函数有三个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面ABCDEPD的中点,.

1)求四棱锥的体积V

2)若FPC的中点,求证:平面平面AEF

3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

1)求函数的单调区间;

2)若恒成立,求的取值范围.为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0m2,动点M到两定点F1(﹣m,0),F2m,0)的距离之和为4,设点M的轨迹为曲线C,若曲线C过点.

1)求m的值以及曲线C的方程;

2)过定点且斜率不为零的直线l与曲线C交于A,B两点.证明:以AB为直径的圆过曲线C的右顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在等腰梯形中,,直角梯形所在的平面垂直于平面,且.

1)证明:平面平面

2)点在线段上,试确定点的位置,使平面与平面所成的二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点都在椭圆上,且点在第一象限,点的中点,

1)若,求点的坐标;

2的面积是否是常数,若是,请求出;若不是,请说明理由.

查看答案和解析>>

同步练习册答案