精英家教网 > 高中数学 > 题目详情

【题目】如图1,在矩形中,,点分别在线段上,且,现将沿折到的位置,连结,如图2

1)证明:

2)记平面与平面的交线为.若二面角,求与平面所成角的正弦值.

【答案】1)证明见解析 2

【解析】

(1)建立坐标系证明,再由线面垂直的判定定理以及线面垂直的性质证明

(2)根据公理得到平面与平面的交线,再根据二面角定义得到二面角的平面角,建立空间直角坐标系,利用向量法求与平面所成角的正弦值.

解:(1)证明:如图,线段交于点

中,由

以点A为坐标原点,建立直角坐标系,则

,从而有

即在图2中有平面

平面

平面

2)延长交于点,连接

根据公理得到直线即为,再根据二面角定义得到.

在平面内过点作底面垂线,为原点,分别以、及所作为轴、轴、轴建立空间直角坐标

设平面的一个法向量为

,得.

与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且椭圆过点.

(1)求椭圆的标准方程;

(2)设直线交于两点,点上,是坐标原点,若,判断四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园有个池塘,其形状为直角△ABC,,AB的长为2百米,BC的长为1百米.

(1)若准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D、E、F,如图(1),使得,在△DEF内喂食,求当△DEF的面积取最大值时EF的长;

(2)若准备建造一个荷塘,分别在AB、BC、CA上取点D、E、F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,记,求△DEF边长的最小值及此时的值.(精确到1米和0.1度)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知袋中装有红球,黑球共7个,若从中任取两个小球(每个球被取到的可能性相同),其中恰有一个红球的概率为.

1)求袋中红球的个数;

2)若袋中红球比黑球少,从袋中任取三个球,求三个球中恰有一个红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的城市和交通拥堵严重的城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:

1)根据茎叶图,比较两城市满意度评分的平均值的大小(不要求计算具体值,给出结论即可);

2)若得分不低于85分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此列联表,并据此样本分析是否有的把握认为城市拥堵与认可共享单车有关;

合计

认可

不认可

合计

3)若此样本中的城市和城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自城市的概率是多少?

(参考公式:

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.

(1)求的直角坐标方程;

(2)直线为参数)与曲线交于两点,与轴交于,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】:实数满足,其中;

:实数满足.

Ⅰ)若,为真,求实数的取值范围;

Ⅱ)若的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:

1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到0.01)

2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案