精英家教网 > 高中数学 > 题目详情
[选做题]已知圆C的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是
x=
2
2
t+m
y=
2
2
t
(t是参数).若直线l与圆C相切,求实数m的值.
分析:将圆C的极坐标方程化为直角坐标方程,直线的参数方程化为普通方程,再根据直线l与圆C相切,利用圆心到直线的距离等于半径,即可求实数m的值
解答:解:由ρ=4cosθ,得ρ2=4ρcosθ,
∴x2+y2=4x,
即圆C的方程为(x-2)2+y2=4,
∴圆的圆心坐标为(2,0),半径为2
又由
x=
2
2
t+m
y=
2
2
t
消t,得x-y-m=0,
∵直线l与圆C相切,
∴圆心到直线的距离等于半径
|2-m|
2
=2

解得m=2±2
2
点评:本题重点考查方程的互化,考查直线与圆的位置关系,解题的关键是利用圆心到直线的距离等于半径,研究直线与圆相切.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)已知圆C的参数方程为
x=1+2cosα
y=2sinα
(α为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ=2,则直线l与圆C的公共点的直角坐标为
(1,2)
(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选讲选做题)已知圆C的参数方程为
x=cosθ
y=sinθ+2
(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)(坐标系与参数方程选做题)已知圆C的极坐标方程ρ=2cosθ,则圆C上点到直线l:ρcosθ-2ρsinθ+7=0的最短距离为
8
5
5
-1
8
5
5
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)已知圆C的圆心为(6,
π
2
)
,半径为5,直线θ=α(
π
2
≤θ<π,ρ∈R)
被圆截得的弦长为8,则α=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在二题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(几何证明选做题)如图,已知RT△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则
BD
DA
=
16
9
16
9

(2)(坐标系与参数方程选做题)已知圆C的圆心是直线
x=t
y=1+t
(t为参数)与x轴的交点,且圆C与直线x+y+3=0相切.则圆C的方程为
(x+1)2+y2=2
(x+1)2+y2=2

查看答案和解析>>

同步练习册答案