精英家教网 > 高中数学 > 题目详情
6.(1)已知cosα+2sinα=-$\sqrt{5}$,求 tanα 的值.
(2)已知tan(π+α)=$\frac{1}{2}$,求$\frac{sin(α-π)cos(α-\frac{π}{2})-co{s}^{2}(-π-α)}{1-sin(-π-α)sin(-\frac{π}{2}+α)+co{s}^{2}(α+π)}$的值.

分析 (1)由已知及同角三角函数基本关系式整理可得5sin2α+4$\sqrt{5}$sinα+4=0,进而解得sinα,cosα的值,利用同角三角函数基本关系式可求tanα的值.     
(2)由已知可求tan$α=\frac{1}{2}$,进而利用诱导公式,同角三角函数基本关系式化简所求即可计算得解.

解答 (本题满分为12分)
解:(1)由 $\left\{\begin{array}{l}{cosα+2sinα=-\sqrt{5}}\\{si{n}^{2}α+co{s}^{2}α=1}\end{array}\right.$,…(1分)
得 5sin2α+4$\sqrt{5}$sinα+4=0,…(3分)
($\sqrt{5}$sinα+2)2=0,
所以 sinα=-$\frac{2}{\sqrt{5}}$,cosα=-$\frac{1}{\sqrt{5}}$,…(5分)
tanα=2.                             …(6分)
(2)由tan(π+α)=$\frac{1}{2}$,得tan$α=\frac{1}{2}$,…(8分)
$\frac{sin(α-π)cos(α-\frac{π}{2})-co{s}^{2}(-π-α)}{1-sin(-π-α)sin(-\frac{π}{2}+α)+co{s}^{2}(α+π)}$
=$\frac{(-sinα)sinα-co{s}^{2}α}{1-sinα(-cosα)+co{s}^{2}α}$               …(10分)
=-$\frac{ta{n}^{2}α+1}{ta{n}^{2}α+tanα+2}$=-$\frac{\frac{1}{4}+1}{\frac{1}{4}+\frac{1}{2}+2}$=-$\frac{5}{11}$.  …(12分)

点评 本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设F1、F2分别是椭圆的左、右焦点,坐标分别是(-2,0)、(2,0),椭圆离心率为60°角的正弦值
(1)求椭圆的标准方程;
(2)若P是该椭圆上的一个动点,求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值和最小值;
(3)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,短轴长为2,若直线l过点E(-1,0)且与椭圆交于A,B两点.
(1)求椭圆的标准方程;
(2)是否存在△AOB面积的最大值,若存在,求出△AOB的面积;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx,$g(x)=\frac{1}{2}ax+b$.
(Ⅰ)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;
(Ⅱ)若$φ(x)=\frac{m(x-1)}{x+1}-f(x)$在[1,+∞)上是减函数,求实数m的取值范围;
(Ⅲ)证明不等式:$\frac{1}{ln2}+\frac{1}{ln3}+\frac{1}{ln4}+…+\frac{1}{ln(n+1)}$$<\frac{n}{2}+1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数$y=m{(\frac{1}{4})^x}-{(\frac{1}{2})^x}$+1仅有一个零点,则实数m 的取值范围是m≤0或$m=\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(2x+$\frac{π}{4}$)+1.
(1)用“五点法”作出f(x)在$x∈[-\frac{π}{8},\frac{7π}{8}]$上的简图;
(2)写出f(x)的对称中心以及单调递增区间;
(3)求f(x)的最大值以及取得最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x•|x|-2x.
(1)判断函数f(x)的奇偶性,并证明;
(2)若方程f(x)=m有三个不同实根时,求实数m的取值范围;
(3)写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在区间$[{-\frac{π}{4},\frac{2π}{3}}]$上任取一个数x,则函数$f(x)=3sin({2x-\frac{π}{6}})$的值不小于0的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{6}{11}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,几何体ABC-C1B1的底面ABC为等边三角形,侧面BB1C1C为矩形,B1B⊥平面ABC,E为边AB1的中点,D在边BC上移动.
(1)若D为边BC的中点,求证:BE∥平面ADC1
(2)若AB=BB1=2,记l为平面BEC与平面ADC1的交线,试确定点D的位置,使得直线l与平面ACC1所成的角θ满足sinθ=$\frac{\sqrt{21}}{14}$.

查看答案和解析>>

同步练习册答案