精英家教网 > 高中数学 > 题目详情
14.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).
求:(1)sinα-cosα;
(2)tanα+$\frac{1}{tanα}$.

分析 由条件利用诱导公式求得2sinαcosα 的值,可得sinα-cosα=$\sqrt{{(sinα-cosα)}^{2}}$ 以及tanα+$\frac{1}{tanα}$=$\frac{1}{sinαcosα}$ 的值.

解答 解:根据sin(π-α)-cos(π+α)=sinα+cosα=$\frac{\sqrt{2}}{3}$,($\frac{π}{2}$<α<π),
平方可得2sinαcosα=-$\frac{7}{9}$,
∴(1)sinα-cosα=$\sqrt{{(sinα-cosα)}^{2}}$=$\sqrt{1+\frac{7}{9}}$=$\frac{4}{3}$.
(2)tanα+$\frac{1}{tanα}$=$\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$=$\frac{1}{sinαcosα}$=-$\frac{18}{7}$.

点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.不等式x2-4x-5>0的解集是{x|x<-1或x>5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tan(π+α)=2,则$\frac{sinα+sin(\frac{π}{2}+α)}{sinα+cos(π-α)}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设命题p:存在x0∈(-2,+∞),使得6+|x0|=5.
命题q:对任意x∈(0,+∞),($\frac{1}{x}$+x)($\frac{4}{x}+x$)≥9恒成立.
(1)写出命题p的否定;
(2)判断命题非p,p或q,p且q的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.扇形AOB,半径为2cm,|AB|=2$\sqrt{2}$cm,则$\widehat{AB}$所对的圆心角弧度数为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知m∈R,命题p:$\frac{{x}^{2}}{2-m}$+$\frac{{y}^{2}}{m+4}$=1表示双曲线;命题q:$\frac{{x}^{2}}{3-m}$+$\frac{{y}^{2}}{m+5}$=1表示点在x轴上的椭圆.
(1)若p是真命题,求实数m的取值范围;
(2)若“非p”与“p或q”都是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在1和16之间插入三个正数a,b,c,使1,a,b,c,16成等比数列,那么b等于(  )
A.2B.4C.8D.$\frac{17}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.化简:(1)tanθ$\sqrt{1-si{n}^{2}θ}$,其中θ为第二象限角;
(2)$\sqrt{\frac{1-cosa}{1+cosa}}$+$\sqrt{\frac{1+cosa}{1-cosa}}$,其中a为第四象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.0与{0}之间的正确关系是(  )
A.0⊆{0}B.0∈{0}C.0={0}D.0∉{0}

查看答案和解析>>

同步练习册答案