精英家教网 > 高中数学 > 题目详情
(2012•浙江模拟)定义:过双曲线焦点的直线与双曲线交于A、B两点,则线段AB成为该双曲线的焦点弦.已知双曲线
x2
25
-
y2
9
=1,那么过改双曲线的左焦点,长度为整数且不超过2012的焦点弦条数是(  )
分析:双曲线
x2
25
-
y2
9
=1中,左焦点F1(-
34
,0).双曲线过左焦点的焦点弦可以分为两类:第一类,端点均在左支上,最短的为通径,第二类,端点分别在两支,最短为实轴.由此入手能够求出结果.
解答:解:双曲线
x2
25
-
y2
9
=1中,a2=25,b2=9,c2=34,
左焦点F1(-
34
,0)
双曲线过左焦点的焦点弦可以分为两类:
第一类,端点均在左支上,最短的为通径,
将x=-
34
代入椭圆方程,得
y2=
81
25
,|y|=
9
5
,∴通径长为2|y|=
18
5
=3.6,
∵长度为整数且不超过2012,
∴符合条件的焦点弦长为4,5,6,…,2012,
根据对称性每个弦长对应2条弦,共2×(2012-3)=4018.
第二类,端点分别在两支,最短为实轴,
2a=10,符合题意的弦长:10,11,12,…,2012,
弦长为10的只有1条,其它的对应2条,
∴满足条件的弦共有:1+2(2012-10)=4005,
两类合计共4018+4005=8023条.
故选C.
点评:本题考查双曲线的性质及其应用,具体涉及到双曲线的简单性质,双曲线和直线的位置关系,解题时要认真审题,仔细解答,注意分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知cos(x-
π
6
)=-
3
3
,则cosx+cos(x-
π
3
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知函数f(x)=(x2-ax+1)•ex
(I)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)对任意b>0,f(x)在区间[b-lnb,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为
63
64
,则事件A恰好发生一次的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)焦点在x轴上的椭圆
x2
4a
+
y2
a2+1
=1
的离心率的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为(  )

查看答案和解析>>

同步练习册答案