精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的函数满足:①对任意实数,都有;②对任意,都有.

(1)求,并证明上的单调增函数;

(2)若恒成立,求实数的取值范围;

(3)已知,方程有三个根,若,求实数.

【答案】1,证明见详解;(2;(3.

【解析】

1)对抽象函数进行赋值,令,即可求得;根据单调性的定义,作差,比较大小,定号即可证明;需要注意抽象函数在作差时的变形;

2)利用函数的单调性,将问题转化为绝对值不等式恒成立的问题,再利用绝对值三角不等式求得最值,即可得到的取值范围.

3)构造函数,从而将问题转化为函数图像交点的问题,数形结合,再利用,即可求解.

(1)令,则代入条件①,

得:,则

,则

因为任意,都有,则

,则,都有

则对任意都有

,所以

所以:上的单调增函数.

(2)由条件恒成立;

可化为

即:

恒成立.

故只需.

解得.

(3)设,显然

方程等价于

即:

可改写为:

又当时,

,画出函数图像如下所示:

于是,∴

,∴

由已知条件,∴

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足:(常数),.数列满足:.

1)求的值;

2)求数列的通项公式;

3)是否存在k,使得数列的每一项均为整数?若存在,求出k的所有可能值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】销售某种活海鲜,根据以往的销售情况,按日需量(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.这种海鲜经销商进价成本为每公斤20元,当天进货当天以每公斤30元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某海鲜产品经销商某天购进了300公斤这种海鲜,设当天利润为元.

(I)求关于的函数关系式;

(II)结合直方图估计利润不小于800元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的直线方程.

(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;

(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:

每月完成合格产品的件数(单位:百件)

频数

10

45

35

6

4

男员工人数

7

23

18

1

1

(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?

非“生产能手”

“生产能手”

合计

男员工

女员工

合计

(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.

附:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图的折线图是某超市2018年一月份至五月份的营业额与成本数据,根据该折线图,下列说法正确的是( )

A.该超市2018年的前五个月中三月份的利润最高

B.该超市2018年的前五个月的利润一直呈增长趋势

C.该超市2018年的前五个月的利润的中位数为0.8万元

D.该超市2018年前五个月的总利润为3.5万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为曲线上两点,的横坐标之和为.

1)求直线的斜率;

2)设弦的中点为,过点分别作抛物线的切线,则两切线的交点为,过点作直线,交抛物线于两点,连接.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》的学生有70位,只阅读过《红楼梦》的学生有20位,则既没阅读过《西游记》也没阅读过《红楼梦》的学生人数与该校学生总数比值的估计值为(

A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出的普通方程和的直角坐标方程;

(2)设点上,点上,求的最小值及此时的直角坐标.

查看答案和解析>>

同步练习册答案