精英家教网 > 高中数学 > 题目详情
19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y≤0}\\{y-2≤0}\end{array}\right.$,设z=2x+y,则z的最大值是6.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点B时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{y=2}\\{x-y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即B(2,2)
将B(2,2)的坐标代入目标函数z=2x+y,
得z=2×2+2=6.即z=2x+y的最大值为6.
故答案为:6.

点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且经过点(2,0)
(Ⅰ)求椭圆C的方程
(Ⅱ)若与坐标轴不垂直的直线l经过椭圆C的左焦点F(-c,0),且与椭圆C交于不同两点A,B,问是否存在常数λ,(λ为实数),使|AB|=λ|AF||BF|恒成立,若存在,请求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出以下四个问题,
①输入一个数x,输出它的相反数.
②求面积为6的正方形的周长.
③求三个数a,b,c中的最大数.
④求函数f(x)=$\left\{\begin{array}{l}{x-1,x≥0}\\{x+2,x<0}\end{array}\right.$的函数值.
其中不需要用条件语句来描述其算法的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设U=R,集合A={x|x2+3x+2=0},B={x|(x+1)(x+m)=0},
(1)若m=1,用列举法表示集合A、B;
(2)若m≠1,且B⊆A,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的首项为a,公差为b,等比数列{bn}的首项为b,公比为a(其中a,b均为正整数).
(1)若a1=b1,a2=b2,求数列{an},{bn}的通项公式;
(2)对于(1)中的数列{an}和{bn},对任意k∈N*在bk与bk+1之间插入ak个2,得到一个新的数列{cn},试求满足等式$\sum_{i=1}^m{{c_i}=2{c_{m+1}}}$的所有正整数m的值;
(3)已知a1<b1<a2<b2<a3,若存在正整数m,n,t以及至少三个不同的b值使得am+t=bn成立,求t的最小值,并求t最小时a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设An和Bn是等差数列{an}和{bn}的前n项和,若$\frac{a_5}{b_7}=1$,则$\frac{A_9}{{{B_{13}}}}$=(  )
A.$\frac{9}{13}$B.$\frac{5}{7}$C.$\frac{17}{25}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆x2+y2=4与双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}$=1(b>0)的两条渐近线相交于A,B,C,D四点,若四边形ABCD的面积为2b,则b=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个红色的棱长是3cm的正方体,将其适当分割成棱长为1cm的小正方体,则三面涂色的小正方体有(  )
A.6个B.8个C.16个D.27个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow a=(1,-2)$,$\overrightarrow b=(2,λ)$,且$\overrightarrow a$与$\overrightarrow b$的夹角为锐角,则实数λ的取值范围是(  )
A.(-∞,1)B.(-∞,1]C.(-∞,-4)∪(-4,1]D.(-∞,-4)∪(-4,1)

查看答案和解析>>

同步练习册答案