精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当时,求函数的单调区间;

(2)若函数在区间上的最小值是,求的值;

(3)设是函数图象上任意不同的两点,线段的中点为,直线的斜率为,证明:.

【答案】(1)函数的单调增区间是(2)(3)见解析.

【解析】

试题(1)求出的导数,导数大于,即可求函数的增区间;

(2)对进行分类讨论,分别求出各种情况下的函数在上的最小值令其为,解方程求得的值;

(3)对于当时,先把具体出来,然后求导函数,得到,在利用斜率公式求出过这两点的斜率公式,利用构造函数并利用构造函数的单调性比较大小.

试题解析: (1)解:,则

∴函数的单调增区间是

(2)解:在上,分如下情况讨论:

1.当时,,函数单调递增,其最小值为,这与函数在上的最小值是相矛盾;

2.当时,函数单调递增,其最小值为,同样与最小值是相矛盾;

3.当时,函数上有,单调递减,在上有,单调递增,

∴函数的最小值为,得

4.当时,函数上有,单调递减,其最小值为与最小值是相矛盾;

5.当时,显然函数上单调递减,其最小值为与最小值是相矛盾.

综上所述,的值为

(3)证明:当时,,

,不妨设,要比较的大小,

即比较的大小,又因为

所以即比较的大小.

,则上是增函数.

,∴,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所有抽取的30岁以上的网民中利用分层抽样抽取5人,

求这5人中经常使用、偶尔或不用共享单车的人数;

从这5人中,在随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:

(1)取出1球是红球或黑球的概率;

(2)取出1球是红球或黑球或白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:

20以下

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在且未使用自由购的概率;

(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在的人数,求随机变量的分布列及数学期望;

(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量万件(生产量与销售量相等)与推广促销费万元之间的函数关系为(其中推广促销费不能超过5千元).已知加工此农产品还要投入成本万元(不包括推广促销费用),若加工后的每件成品的销售价格定为元/件.

(1)试将该批产品的利润万元表示为推广促销费万元的函数;(利润=销售额-成本-推广促销费)

(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个三棱锥的三个侧面中有两个是等腰直角三角形, 另一个是边长为 1 的正三角形.那么, 这个三棱锥的体积大小 ( ).

A. 有惟一确定的值 B. 2 个不同值

C. 3 个不同值 D. 3 个以上不同值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆E)过点,其心率等于.

1)求椭圆E的标准方程;

2)若AB分别是椭圆E的左,右顶点,动点M满足,且椭圆E于点P.

①求证:为定值:

②设与以为直径的圆的另一交点为Q,求证:直线经过定点.

查看答案和解析>>

同步练习册答案