精英家教网 > 高中数学 > 题目详情
2.若P为圆(x-2)2+y2=1上的动点,则点P到直线l:x-y+2=0的最短距离为2$\sqrt{2}$-1.

分析 点P到直线l:x-y+2=0的最短距离为圆心到直线距离再减去半径.

解答 解:点P到直线l:x-y+2=0的最短距离为圆心到直线距离再减去半径.
圆(x-2)2+y2=1圆心为(2,0),
则圆心(2,0)到直线l:x-y+2=0的距离为d=$\frac{|2+2|}{\sqrt{2}}$=2$\sqrt{2}$,
半径为r=1,
故点P到直线l:x-y+2=0的最短距离为2$\sqrt{2}$-1.
故答案为:2$\sqrt{2}$-1.

点评 本题考查点到直线的最短距离的求法,考查圆的性质、直线与圆的位置关系,考查推理论证能力、运算求解能力,考查转化化归思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设a为实数,给出命题p:关于x的不等式${({\frac{1}{2}})^{|x|}}≥a$的解集为ϕ,命题q:函数$f(x)=lg({a{x^2}+({a-2})x+\frac{9}{8}})$的定义域为R,若命题p∨q为真,命题p∧q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,平面EAD⊥平面ABCD,△ADE是等边三角形,ABCD是矩形,F是AB的中点,P是O的中点,O是PQ的中点,EC与平面ABCD成30°角.
(1)求证:EG⊥平面ABCD;
(2)求证:HF∥平面EAD;
(3)若AD=4,求三棱锥D-CEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=ax2+bx+c(a,b,c∈R),若函数y=f(x)ex在x=-1处取得极值,则下列图象不可能为y=f(x)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知焦点在x轴上的椭圆E:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{{b}^{2}}$=1(b>0)
(1)若0<b≤2,求离心率e的取值范围;
(2)椭圆E内含圆C:x2+y2=$\frac{8}{3}$.圆C的切线l与椭圆E交于A,B两点,满足$\overrightarrow{OA}⊥\overrightarrow{OB}$(O为坐标原点).
①求b2的值;
②求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.把长和宽分别为6和3的矩形卷成一个圆柱的侧面,求这个圆柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.等腰直角三角形的直角边长为1,则绕直角边旋转一周所形成的几何体的体积为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的图象(部分)如图所示,则f(x)的解析式是f(x)=2sin(πx+$\frac{π}{6}$),x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线m、l与平面α、β、γ满足β∩γ=l,l∥α,m?α,m⊥γ,则下列命题一定正确的是(  )
A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ

查看答案和解析>>

同步练习册答案