【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于,两点,过这两点分别作抛物线的切线,且这两条切线相交于点.
(1)若点的坐标为,求的值;
(2)设线段的中点为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于,两点,求的取值范围.
【答案】(1)(2)
【解析】
(1)由定义可得,设切线的方程为,代入,得,由得,分类讨论即可求出答案;
(2)由(1)可得点以线段为直径的圆的方程为,根据对称性,不妨设直线的斜率为正数,由可求得,联立直线与抛物线方程并整理得,设,,利用韦达定理即可求出答案.
解:(1)∵抛物线的焦点到准线的距离为,
∴,故抛物线的方程为,
设切线的方程为,
代入,得,
由得,
当时,点的横坐标为,则,
当时,同理可得,
综上可得;
(2)由(1)知,,,
∴以线段为直径的圆的方程为,
根据对称性,不妨设直线的斜率为正数,
∵为直线与圆的切点,
∴,,∴,
∴,,
∴直线的方程为,
由,整理得,
∵,∴,
设,,则,,
∴,
∵,∴,
∴,
∴.
科目:高中数学 来源: 题型:
【题目】甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为。
(1)记甲击中目标的次数为,求的概率分布及数学期望;
(2)求乙至多击目标2次的概率;
(3)求甲恰好比乙多击中目标2次的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=(x+1)ln x-2x.
(1)求函数的单调区间;
(2)设h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了响应党的十九大所提出的教育教学改革,某校启动了数学教学方法的探索,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班40人,甲班按原有传统模式教学,乙班实施自主学习模式.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间,,,,进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
(1)完成表格,并判断是否有以上的把握认为“数学成绩优秀与教学改革有关”;
甲班 | 乙班 | 合计 | |
大于等于80分的人数 | |||
小于80分的人数 | |||
合计 |
(2)从乙班,,分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年10月中上旬是小麦的最佳种植时间,但小麦的发芽会受到土壤、气候等多方面因素的影响.某科技小组为了解昼夜温差的大小与小麦发芽的多少之间的关系,在不同的温差下统计了100颗小麦种子的发芽数,得到了如下数据:
温差 | 8 | 10 | 11 | 12 | 13 |
发芽数(颗) | 79 | 81 | 85 | 86 | 90 |
(1)请根据统计的最后三组数据,求出关于的线性回归方程;
(2)若由(1)中的线性回归方程得到的估计值与前两组数据的实际值误差均不超过两颗,则认为线性回归方程是可靠的,试判断(1)中得到的线性回归方程是否可靠;
(3)若100颗小麦种子的发芽率为颗,则记为的发芽率,当发芽率为时,平均每亩地的收益为元,某农场有土地10万亩,小麦种植期间昼夜温差大约为,根据(1)中得到的线性回归方程估计该农场种植小麦所获得的收益.
附:在线性回归方程中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国综合国力的不断增强,不少综合性娱乐场所都引进了“摩天轮”这一娱乐设施.(如图1)有一半径为40m的摩天轮,轴心距地面50m,摩天轮按逆时针方向做匀速旋转,转一周需要3min.点与点都在摩天轮上,且点相对于点落后1min,当点在摩天轮的最低点处时开始计时,以轴心为坐标原点,平行于地面且在摩天轮所在平面内的直线为轴,建立图2所示的平面直角坐标系.
(1)若,求点的纵坐标关于时间的函数关系式;
(2)若,求点距离地面的高度关于时间的函数关系式,并求时,点离地面的高度(结果精确到0.1,计算所用数据:)
(3)若,当,两点距离地面的高度差不超过时,求时间的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com