【题目】如图,已知四棱锥,,平面平面,且,.
(1)证明:平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)分别取,的中点,,连结,,,要证平面,需证明,,其中可通过证明平面来证明,通过证明平面来证明;
(2)以A为坐标原点,建立空间直角坐标系,求出面的一个法向量以及直线的方向向量,求出两向量的夹角的余弦值即为直线与平面所成角的正弦值.
(1)证明:分别取,的中点,,连结,,.
因,为的中点,
故.
同理,,.
故平面.
故.
因平面平面,平面平面,
平面,,
故平面.
则.
又,是平面中的相交直线,
故平面.
(2)由(1)知,面,又∥,
面.
如图,以A为坐标原点,建立空间直角坐标系,
不妨设,则,,,
,,
则,,.
设是面的一个法向量,
则,即,
取,则.
设直线与平面所成的角为,
则,
所以直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为(为参数),直线与曲线分别交于,两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若点的极坐标为,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的离心率是,过点做斜率为的直线,椭圆与直线交于两点,当直线垂直于轴时.
(Ⅰ)求椭圆的方程;
(Ⅱ)当变化时,在轴上是否存在点,使得是以为底的等腰三角形,若存在求出的取值范围,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公差不为零的等差数列{an}满足:a3+a8=20,且a5是a2与a14的等比中项.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】业界称“中国芯”迎来发展和投资元年,某芯片企业准备研发一款产品,研发启动时投入资金为(为常数)元,之后每年会投入一笔研发资金,年后总投入资金记为,经计算发现当时,近似地满足,其中为常数,.已知年后总投入资金为研发启动时投入资金的倍.问
(1)研发启动多少年后,总投入资金是研发启动时投入资金的倍;
(2)研发启动后第几年的投入资金的最多.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”.给出下列四个函数:
①;
②;
③;
④.
其中存在唯一“可等域区间”的“可等域函数”的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,OM,ON是两条海岸线,Q为海中一个小岛,A为海岸线OM上的一个码头.已知,,Q到海岸线OM,ON的距离分别为3 km,km.现要在海岸线ON上再建一个码头,使得在水上旅游直线AB经过小岛Q.
(1)求水上旅游线AB的长;
(2)若小岛正北方向距离小岛6 km处的海中有一个圆形强水波P,从水波生成t h时的半径为(a为大于零的常数).强水波开始生成时,一游轮以km/h的速度自码头A开往码头B,问实数a在什么范围取值时,强水波不会波及游轮的航行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥S-ABCD中,四边形ABCD菱形,,平面平面 ABCD, .E,F 分别是线段 SC,AB 上的一点, .
(1)求证:平面SAD;
(2)求平面DEF与平面SBC所成锐二面角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com