精英家教网 > 高中数学 > 题目详情
11.函数f(x)=|x-1|+2
(1)求不等式f(x)<4的解集.
(2)若关于x的不等式f(x)-2m<f(x+3)的解集为R,求实数m的取值范围.

分析 (1)由已知解得|x-1|<2,去绝对值可得-2<x-1<2,即可得解.
(2)利用已知可得2m>f(x)-f(x+3),由于f(x)-f(x+3)=|x-1|-|x+2|的最大值为-3,即可解得m的取值范围.

解答 解:(1)∵|x-1|<2,则-2<x-1<2,解集为:(-1,3)…(6分)
(2)∵2m>f(x)-f(x+3),
f(x)-f(x+3)=|x-1|-|x+2|的最大值为-3,
∴实数m的取值范围为($\frac{3}{2}$,+∞).…(12分)

点评 本题主要考查了绝对值不等式的解法,函数恒成立的问题的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知sinα=-$\frac{1}{2}$,且α是第三象限角,则:
(1)cosα=-$\frac{\sqrt{3}}{2}$;
(2)tanα=$\frac{\sqrt{3}}{3}$;
(3)若角α满足:$\frac{π}{2}$<α<9,则角α=$\frac{7π}{6}$.(用弧度表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l方程为2x+(m-3)y-2m+6=0(m≠3).
(1)当m为何值时,直线l的斜率为-1?
(2)当m为何值时,直线l在x轴上的截距为-2?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知α,β都是锐角,且cosβ=$\frac{8}{17}$,cos(α+β)=-$\frac{4}{5}$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求方程3x-x=4的正实数解.(精确到 0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C:(x-1)2+(y+2)2=9,直线l:y=kx+1,与圆C相交于A、B两点,O为坐标原点,并且OA⊥OB,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列各式的值.
(1)$(2\frac{1}{4})^{\frac{1}{2}}$-0.30-${16}^{-\frac{3}{4}}$;
(2)设${x}^{\frac{1}{2}}$+${x}^{-\frac{1}{2}}$=3,求x+x-1的值;
(3)${4^{{{log}_4}5}}-ln{e^5}+lg500+lg2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点$M(1,\frac{{\sqrt{2}}}{2})$,且其离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)若F为椭圆C的右焦点,椭圆C与y轴的正半轴相交于点B,经过点B的直线与椭圆C相交于另一点A,且满足$\overrightarrow{BA}•\overrightarrow{BF}$=2,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某公司每生产一批产品都能维持一段时间的市场供应,若公司本次新产品生产x月后,公司的存货量大致满足模型f(x)=-3x3+12x+8,那么下次生产应在多长时间后开始?(  )
A.1个月后B.2个月后C.3个月后D.4个月后

查看答案和解析>>

同步练习册答案