精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)在其定义区间[a,b]上满足①f(x)>0;②f′(x)<0;③对任意的x1 , x2∈[a,b],式子 恒成立.记S1= f(x)dx,S2= (b﹣a),S3=f(b)(b﹣a),则S1 , S2 , S3的大小关系为 . (按由小到大的顺序)

【答案】s3<s1≤s2
【解析】解:由微积分中值定理:可知若函数 f(x) 在 闭区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点 ξ, 使得: f(x)dx=f(ξ)(b﹣a),a≤ξ≤b,
∵f′(x)<0,f(x)在定义区间[a,b]单调递减,f(b)<f(ξ),
∴s3<S1
对任意的x1 , x2∈[a,b],式子 恒成立,
函数图象可知:当 = 时,
由定积分的几何意义可知,S1= f(x)dx= (b﹣a)=S2

由函数图象可知:函数单调递减且为凹函数,根据定积分的几何意义可知:
S1= f(x)dx< (b﹣a)=S2
∴s1≤s2
综上可知:s3<s1≤s2
所以答案是:s3<s1≤s2
【考点精析】关于本题考查的定积分的概念,需要了解定积分的值是一个常数,可正、可负、可为零;用定义求定积分的四个基本步骤:①分割;②近似代替;③求和;④取极限才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线3x+y﹣1=0上,且x轴,y轴被圆C截得的弦长分别为2 ,4 ,若圆心C位于第四象限
(1)求圆C的方程;
(2)设x轴被圆C截得的弦AB的中心为N,动点P在圆C内且P的坐标满足关系式(x﹣1)2﹣y2= ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x+1),g(x)=lg(1﹣x). (Ⅰ)求函数f(x)+g(x)的定义域;
(Ⅱ)判断函数f(x)+g(x)的奇偶性,并说明理由;
(Ⅲ)判断函数f(x)+g(x)在区间(0,1)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是矩形, 分别是 中点,

)求证: 平面

)求证: 平面

)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax﹣lnx,x∈(0,e],其中e是自然常数,a∈R.
(1)当a=1时,求f(x)的单调区间和极值;
(2)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
(3)证明:(1﹣ )( )( )…( )<e33n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若对任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,则实数m的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则14分钟后P点距地面的高度是米.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b∈R+ , m,n∈N* . (Ⅰ)求证:(an+bn)(am+bm)≤2(am+n+bm+n);
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 <β<α< ,cos(α﹣β)= ,sin(α+β)=﹣ ,则sin2α的值

查看答案和解析>>

同步练习册答案