精英家教网 > 高中数学 > 题目详情
已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,E为AB的中点,BA1⊥AC1
(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求二面角B-A1E-C余弦值的大小.
分析:(I)BC⊥AC,根据A1D⊥底ABC,得到A1D⊥BC,A1D∩AC=D,所以BC⊥面A1AC,从而BC⊥AC1,又因BA1⊥AC1,BA1∩BC=B,根据线面垂直的判定定理可知AC1⊥底A1BC;
(II)由(I)知AC1⊥A1C,ACC1A1为菱形,从而可得△A1AE≌△A1CE.作AF⊥A1E于F,连CF,则CF⊥A1E,故∠AFC为二面角A-A1E-C的平面角,从而可求二面角B-A1E-C余弦值的大小.
解答:证明:(I)∠BCA=90°得BC⊥AC,
因为A1D⊥底ABC,所以A1D⊥BC,
因为A1D∩AC=D,所以BC⊥面A1AC,
所以BC⊥AC1
因为BA1⊥AC1,BA1∩BC=B,
所以AC1⊥底A1BC
(II)由(I)知AC1⊥A1C,ACC1A1为菱形,
∴∠A1AC=60°AA1=AC=A1C=2,
又CE=EA,故△A1AE≌△A1CE.
作AF⊥A1E于F,连CF,则CF⊥A1E,
故∠AFC为二面角A-A1E-C的平面角,
A1E=
A1D2+DE2
=2,AF=CF=
AE•
AA12-(
AE
2
)
2
A1E
=
7
4

cos∠AFC=
AF2+CF2-AC2
2AF•CF
=-
1
7

故二面角B-A1E-C余弦值的大小
1
7
点评:本题主要考查了线面垂直的判定,以及面面角等有关知识,同时考查了数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1的侧面BB1C1C是边长为2的菱形,∠B1BC=60°,侧面BB1C1C⊥底面ABC,∠ABC=90°,二面角A-B1B-C为30°.
(1)求证:AC⊥平面BB1C1C;
(2)求AB1与平面BB1C1C所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1的侧面BB1C1C与底面ABC垂直,BB1=BC,∠B1BC=60°,AB=AC,M是B1C1的中点.
(Ⅰ)求证:AB1∥平面A1CM;
(Ⅱ)若AB1与平面BB1C1C所成的角为45°,求二面角B-AC-B1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜三棱柱ABC-A1B1C1的底面边长AB=2,BC=3,BC⊥面ABC1,CC1与面ABC所成的角为60°则斜三棱柱ABC-A1B1C1体积的最小值是
9
3
9
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成角为
π3
,且侧面ABB1A1垂直于底面.
(1)判断B1C与C1A是否垂直,并证明你的结论;
(2)求四棱锥B-ACC1A1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,点D为AC的中点,A1D⊥平面ABC,A1B⊥ACl
(I)求证:AC1⊥AlC; 
(Ⅱ)求二面角A-A1B-C的余弦值.

查看答案和解析>>

同步练习册答案