精英家教网 > 高中数学 > 题目详情
14.如图,过正方体ABCD-A1B1C1D1的棱BB1的平面交DD1C1C于EE1.求证:BB1∥EE1

分析 利用正方体的性质,只要证BB1∥平面DD1C1C,结合线面平行的性质可证.

解答 证明:因为几何体为正方体,
所以BB1∥平面DD1C1C,
又BB1?平面BB1E1E,平面BB1E1E∩平面DD1C1C=EE1
所以BB1∥EE1

点评 本题考查了正方体中的线线平行的判定,关键是正确利用正方体的性质得到BB1∥平面ADD1A1,再结合线面平行的性质定理可证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),则f(1)的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\frac{lg(2-x)}{\sqrt{12+x-{x}^{2}}}$+(x-1)-1的定义域是(-3,1)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在平面直角坐标系中,与点A(1,1)的距离为1,且与点B(-2,-3)的距离为6的直线条数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}是等差数列,且满足a1+a2+a3=6,a5=5;数列{bn}满足bn-bn-1=an-1(n≥2,n∈N*),b1=1.
(1)求an和bn
(2)记数列cn=$\frac{1}{2{b}_{n}+4n}$,(n∈N*),求{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在单位圆O的某一直径上随机的取一点Q,求过点Q且与径垂直的弦长长度不超过1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直线l经过抛物线y2=4x焦点F,且与抛物线相交于A(x1,y1),B(x2,y2)两点,通过点A和抛物线顶点的直线交抛物线的准线于点D.
(I)若直线l的斜率为1,求线段AB的长;
(Ⅱ)求证:直线DB平行于抛物线的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C:x2+y2-4x-14y+45=0,及点Q(-2,3).
(1)P(a,a+1)在圆上,求直线PQ的斜率;
(2)若M为圆C上任一点,求|MQ|的最大值和最小值;
(3)求$\frac{y-3}{x+2}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列各角中,与-1050°的角终边相同的角是(  )
A.60°B.-60°C.30°D.-30°

查看答案和解析>>

同步练习册答案