精英家教网 > 高中数学 > 题目详情
5.函数y=loga(x2-ax+2)在区间[0,1]上是单调减函数,则实数a的取值范围是(  )
A.[2,+∞)B.(0,1)C.[2,3)D.(2,3)

分析 先根据复合函数的单调性确定函数g(x)=x2-ax+2的单调性,进而分a>1和0<a<1两种情况讨论,最后综合讨论结果,可得答案.

解答 解:令g(x)=x2-ax+2(a>0,且a≠1),
①当a>1时,g(x)在[0,1]上为减函数,
∴$\left\{\begin{array}{l}\frac{a}{2}≥1\\ 1-a+2>0\end{array}\right.$,
∴2≤a<3;
②当0<a<1时,g(x)在[0,1]上为减函数,此时不成立.
综上所述:2≤a<3.
故选:C

点评 本题主要考查复合函数的单调性和对数函数的真数一定大于0.属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知直线l:$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2.
(Ⅰ) 若点M的直角坐标为(2,$\sqrt{3}$),直线l与曲线C交于A、B两点,求|MA|+|MB|的值;
(Ⅱ)设曲线C经过伸缩变换$\left\{\begin{array}{l}{x^/}=\sqrt{3}x\\{y^/}=y\end{array}$得到曲线C′,求曲线C′的内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,若$\sqrt{a+\frac{7}{t}}$=a$\sqrt{\frac{7}{t}}$(a,t均为正实数),类比以上等式,可推测a,t的值,则t-a=(  )
A.31B.41C.55D.71

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x,y满足不等式组$\left\{\begin{array}{l}{2x-3y-6≥0}\\{x+y-3≥0}\\{x≤\frac{7}{2}}\end{array}\right.$,z=x-y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在Rt△ABC 中,∠C=90°,BE平分∠ABC交AC于E,D是AB上一点,且DE⊥BE.
(1)求证:AC是△BDE的外接圆的切线;
(2)若AD=2$\sqrt{6}$,AE=6$\sqrt{2}$,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.观察下列各式:
1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,…,则1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+9}$等于(  )
A.$\frac{17}{9}$B.$\frac{19}{10}$C.$\frac{9}{5}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.画出下列函数的简图.
(1)y=$\frac{x}{2}$+$\frac{2}{x}$;
(2)y=x-$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将相同的正方体按如图所示的形状摆放,从上往下一次为第1层、第2层、第3层…则第5层正方体的个数是15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知变量x,y满足$\left\{{\begin{array}{l}{1≤x+y≤3}\\{-1≤x-y≤1}\end{array}}$,若目标函数z=2x+y取到最大值a,则(x+$\frac{1}{x}$-2)a的展开式中x2的系数为(  )
A.-144B.-120C.-80D.-60

查看答案和解析>>

同步练习册答案