精英家教网 > 高中数学 > 题目详情

已知一条直线的斜率k=sinθ(0≤θ<π),则这条直线的倾斜角的取值范围是

[  ]

A.[0,π)
B.[0,)
C.[0,]
D.[0,]∪[,π]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是
5
x-2y=0

(Ⅰ)求双曲线C的方程;
(Ⅱ)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为
81
2
,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知半椭圆
x2
a2
+
y2
b2
=1(x≥0)
与半椭圆
y2
b2
+
x2
c2
=1(x≤0)
组成的曲线称为“果圆”,其中a2=b2+c2,a>0,b>c>0.如图,设点F0,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,
(1)若三角形F0F1F2是边长为1的等边三角形,求“果圆”的方程;
(2)若|A1A|>|B1B|,求
b
a
的取值范围;
(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦.是否存在实数k,使得斜率为k的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x33
+x2+3ax+1
,动直线l的斜率k=2.
(1)若存在直线l与f(x)的图象相切,求a的取值范围;
(2)若恰好有一条直线l与f(x)的图象相切,求直线l的方程;
(3)若动直线l与f(x)的图象相切点A(x1,y1),且x1∈[-2,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系中,一条定长为m的线段其端点A、B分别在x轴、y轴上滑动,设点M满足
AM
MB
(λ是大于0的常数).
(Ⅰ)求点M的轨迹方程,并说明轨迹是什么曲线;
(Ⅱ)若λ=2,已知直线l与原点O的距离为
m
2
,且直线l与动点M的轨迹有公共点,求直线l的斜率k的取值范围.

查看答案和解析>>

同步练习册答案