精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{4-{x}^{2},x>1}\end{array}\right.$,若f(x)=-1,则-2或$\sqrt{5}$.

分析 直接利用函数的解析式求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{4-{x}^{2},x>1}\end{array}\right.$,若f(x)=-1,
可得x+1=-1,解得x=-2.
x>1时,4-x2=-1,解得x=$\sqrt{5}$.
故答案为:-2或$\sqrt{5}$.

点评 本题考查分段函数的应用,函数零点的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数y=x2与函数y=xlnx在(0,+∞)上增长较快的是y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)-f(x)=2x-1
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)当x∈[-1,2]时,求函数的最大值和最小值.
(Ⅲ)若函数g(x)=f(x)-mx的两个零点分别在区间(-1,2)和(2,4)内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|y=log2x,y<0},$B=\left\{{y\left|{y={{(\frac{1}{2})}^x},0<x<1}\right.}\right\}$,则A∪B=(  )
A.(0,1)B.$(\frac{1}{2},+∞)$C.$(\frac{1}{2},1)$D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)-f(x)=2x-1
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当x∈[-1,2]时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,2a+1]上单调,求实数a的取值范围;
(3)当x∈[-1,1]时,y=f(x)图象恒在y=2x+2m+1的图象上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.比较大小:
(1)0.40.2,20.2,21.6
(2)log0.10.4,1og${\;}_{\frac{1}{2}}$0.4,log30.4,lg0.4;
(3)a-b,ab,aa,其中0<a<b<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在R上的函数f(x)满足f(xy)=f(x)+f(y)(x,y∈R)且f(8)=3,则f($\sqrt{2}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+alnx
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当a=0时,求曲线y=f(x)过点(1,f(1))处的切线方程.

查看答案和解析>>

同步练习册答案