精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)当时,求的单调区间;

(2)若的图象与轴交于两点,起,求的取值范围;

(3)令 ,证明: .

【答案】1单调递增区间为,单调减区间为2(3)见解析

【解析】试题分析:(1),求出 可得增区间,由可得减区间;(2)求出函数的导数,由得到函数的单调区间,根据函数的单调性可得从而确定的范围(3)当时,先证明 ,则叠加得化简即可得结果.

试题解析:1时, ,解得

∴函数的单调递增区间为,单调减区间为.

(2),依题意可知,此时

上单调递减,在上单调递增,又时,

的图象与轴交于两点,

当且仅当

.

的取值范围为.

3)令

,∵,得

所以上单调递减,在上单调递增,

所以,得.

时, .

,则叠加得:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,則第20行从左至右的第4个数字应是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①直线l的方向向量为 =(1,﹣1,2),直线m的方向向量 =(2,1,﹣ ),则l与m垂直;
②直线l的方向向量 =(0,1,﹣1),平面α的法向量 =(1,﹣1,﹣1),则l⊥α;
③平面α、β的法向量分别为 =(0,1,3), =(1,0,2),则α∥β;
④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量 =(1,u,t)是平面α的法向量,则u+t=1.
其中真命题的是 . (把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在长方体ABCD﹣A1B1C1D1中,E、M、N分别是BC、AE、D1C的中点,AD=AA1 , AB=2AD
(Ⅰ)证明:MN∥平面ADD1A1
(Ⅱ)求直线AD与平面DMN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合
(1)求A∩B;
(2)若A∪C=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 分别是中点,弧的半径分别为,点平分弧,过点作弧的切线分别交于点.四边形为矩形,其中点在线段上,点在弧上,延长交于点.设,矩形的面积为.

(1)求的解析式并求其定义域;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2x|x﹣a|,其中a∈R.
(1)当a=﹣1时,在所给坐标系中作出f(x)的图象;
(2)对任意x∈[1,2],函数g(x)=﹣x+14的图象恒在函数f(x)图象的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1﹣DC﹣C1的大小为60°,则AD的长为(

A.
B.
C.2
D.

查看答案和解析>>

同步练习册答案