精英家教网 > 高中数学 > 题目详情
已知向量向量与向量的夹角为,且.
(1)求向量 ;  
(2)若向量共线,向量,其中的内角,且依次成等差数列,求的取值范围.
(1);(2).

试题分析:(1)设,根据条件列方程组计算可得;(2)先确定,利用向量的坐标运算得的表达式,又有的内角,且依次成等差数列,求得角范围,从而得的范围.
试题解析:(1)设,由,得 ①          2分
又向量与向量的夹角为,得 ②                    4分
由①、②解得.         5分
(2)向量共线知,                          6分
由2B=A+C知,                       7分
,                     8分
                 9分
,      11分
,           12分
,即.13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

,将函数在区间内的全部极值点按从小到大的顺序排成数列.
(1)求数列的通项公式;
(2)设,数列的前项和为,求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量,函数的最大值为
(Ⅰ)求
(Ⅱ)将函数的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图像,求上的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为常数).
(1)求函数的最小正周期和单调增区间;
(2)若函数的图像向左平移个单位后,得到函数的图像关于轴对称,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,分别为三个内角的对边,锐角满足. (Ⅰ)求的值;
(Ⅱ) 若,当取最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, 已知单位圆上有四点, 分别设的面积为.

(1)用表示
(2)求的最大值及取最大值时的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 的最小正周期为.
(Ⅰ)求的值;
(Ⅱ)讨论在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其图象过点
(1)求的值;
(2)将函数图象上各点向左平移个单位长度,得到函数的图象,求函数上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,若,则AB=                   .

查看答案和解析>>

同步练习册答案