精英家教网 > 高中数学 > 题目详情

【题目】下列说法:

残差可用来判断模型拟合的效果;

设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;

线性回归直线:必过点

在一个列联表中,由计算得,则有的把握确认这两个变量间有关系其中);

其中错误的个数是( )

A. 0 B. 1 C. 2 D. 3

【答案】B

【解析】分析:根据题意,依次对题目中的命题进行分析,判断真假性即可.

详解:对于,残差可用来判断模型拟合的效果,

残差越小,拟合效果越好,∴①正确;

对于,回归方程=3﹣5x中,变量x增加一个单位时,

y平均减少5个单位,∴②错误;

对于,线性回归方程=x+必过样本中心点(),∴③正确;

对于,在2×2列联表中,由计算得k2=13.079,对照临界值得,

有99%的把握确认这两个变量间有关系,正确;

综上,其中错误的命题是,共1个.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】苏格兰数学家纳皮尔发明了对数表,这一发明为当时的天文学家处理“大数运算”做出了巨大贡献法国著名数学家和天文学家拉普拉斯曾说过:“对数倍增了天文学家的寿命”比如在下面的部分对数表中,16,256对应的幂指数分别为4,8,幂指数和为12,而12对应的幂4096,因此根据此表,推算( )

x

1

2

3

4

5

6

7

8

9

10

2

4

8

16

32

64

128

256

512

1024

x

11

12

13

14

15

16

17

18

19

20

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

x

21

22

23

24

25

2097152

4194304

8388608

16777216

33554432

A. 524288 B. 8388608 C. 16777216 D. 33554432

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A=30°a=4b=5,那么满足条件的△ABC(  )

A. 无解 B. 有一个解 C. 有两个解 D. 不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.

车间

A

B

C

数量

50

150

100

(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形ABCD中,AB<BC,将△ABC沿着对角线AC所在的直线进行翻折,记BD中点为M,则在翻折过程中,下列说法错误的是(
A.存在使得AB⊥DC的位置
B.存在使得AB⊥BD的位置
C.存在使得AM⊥DC的位置
D.存在使得AM⊥AC的位置

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记max{a,b}= ,设M=max{|x﹣y2+4|,|2y2﹣x+8|},若对一切实数x,y,M≥m2﹣2m都成立,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中都是青年人.

(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成2×2列联表:

(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?

(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人,均是青年人的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,四点中恰有两个点为椭圆的顶点,一个点为椭圆的焦点.

(1)求椭圆的方程;

(2)若斜率为1的直线与椭圆交于不同的两点,且,求直线方程.

查看答案和解析>>

同步练习册答案