【题目】下列说法:
①残差可用来判断模型拟合的效果;
②设有一个回归方程:,变量x增加一个单位时,y平均增加5个单位;
③线性回归直线:必过点;
④在一个列联表中,由计算得,则有的把握确认这两个变量间有关系(其中);
其中错误的个数是( )
A. 0 B. 1 C. 2 D. 3
科目:高中数学 来源: 题型:
【题目】苏格兰数学家纳皮尔发明了对数表,这一发明为当时的天文学家处理“大数运算”做出了巨大贡献法国著名数学家和天文学家拉普拉斯曾说过:“对数倍增了天文学家的寿命”比如在下面的部分对数表中,16,256对应的幂指数分别为4,8,幂指数和为12,而12对应的幂4096,因此根据此表,推算( )
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | |
x | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
2048 | 4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144 | 524288 | 1048576 | |
x | 21 | 22 | 23 | 24 | 25 | |||||
2097152 | 4194304 | 8388608 | 16777216 | 33554432 |
A. 524288 B. 8388608 C. 16777216 D. 33554432
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.
车间 | A | B | C |
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】矩形ABCD中,AB<BC,将△ABC沿着对角线AC所在的直线进行翻折,记BD中点为M,则在翻折过程中,下列说法错误的是( )
A.存在使得AB⊥DC的位置
B.存在使得AB⊥BD的位置
C.存在使得AM⊥DC的位置
D.存在使得AM⊥AC的位置
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记max{a,b}= ,设M=max{|x﹣y2+4|,|2y2﹣x+8|},若对一切实数x,y,M≥m2﹣2m都成立,则实数m的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中都是青年人.
(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成2×2列联表:
(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人,均是青年人的概率.
附:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,四点,,,中恰有两个点为椭圆的顶点,一个点为椭圆的焦点.
(1)求椭圆的方程;
(2)若斜率为1的直线与椭圆交于不同的两点,且,求直线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com