精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=(x2+x-1)ex,则f(x)的极大值为$\frac{5}{{e}^{3}}$.

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极大值即可.

解答 解:∵f(x)=(x2+x-1)ex
∴f′(x)=(x2+3x)ex
由f′(x)<0,得-3<x<0;
由f′(x)>0,得x>0或x<-3,
因此,f(x)的极大值为f(-3)=$\frac{5}{{e}^{3}}$,
故答案为:$\frac{5}{{e}^{3}}$.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)当m≥4时,求函数f(x)的单调区间;
(2)设t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3对任意的m∈(4,6)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)是定义在D={x|x≠0}上的奇函数,当x>0时,f(x)=x2-x,则当x<0时,f(x)=-x2-x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$C:\frac{x^2}{16}+\frac{y^2}{9}=1$的左、右焦点分别为F1、F2,过F2的直线交椭圆C于P、Q两点,若|F1P|+|F1Q|=10,则|PQ|等于(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{x^2}{16}-\frac{y^2}{8}=1$的实轴长是(  )
A.2B.$4\sqrt{2}$C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等比数列{an}中,a1=1,a4=8,则其前6项之和为63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平行六面体ABCD-A1B1C1D1中,化简$\overrightarrow{AB}+\overrightarrow{C{C_1}}-\overrightarrow{DB}$为(  )
A.$\overrightarrow{A{C}_{1}}$B.$\overrightarrow{C{A}_{1}}$C.$\overrightarrow{A{D_1}}$D.$\overrightarrow{{D_1}A}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过点P(3,2)且在两坐标轴上的截距相等的直线方程是(  )
A.x-y-1=0B.x+y-5=0或2x-3y=0
C.x+y-5=0D.x-y-1=0或2x-3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设实数a∈R,函数$f(x)=a-\frac{2}{{{2^x}+1}}$是R上的奇函数.
(Ⅰ)求实数a的值;
(Ⅱ)当x∈(-1,1)时,求满足不等式f(1-m)+f(1-m2)<0的实数m的取值范围.

查看答案和解析>>

同步练习册答案