精英家教网 > 高中数学 > 题目详情

【题目】数列{an}满足a1= ,an+1=a ﹣an+1,则M= + +…+ 的整数部分是(
A.1
B.2
C.3
D.4

【答案】A
【解析】解:∵数列{an}满足a1= ,an+1=a ﹣an+1,

∴由题设知,an+1﹣1=an(an﹣1),

=

=

通过累加,得:

M= + +…+ =

=2﹣

由an+1﹣an=(an﹣1)2≥0,即an+1≥an

由a1= ,得a2= ,∴a3=2

∴a2018≥a2017≥a2016≥a3>2,

∴0< <1,

∴1<M<2,

∴M的整数部分为1.

故选:A.

【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D为AC的中点,AB⊥B1D.
(1)求证:平面ABB1A1⊥平面ABC;
(2)在线段CC1(不含端点)上,是否存在点E,使得二面角E﹣B1D﹣B的余弦值为 ?若存在,求出 的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程 =1表示焦点在x轴上的双曲线. (Ⅰ)命题q为真命题,求实数k的取值范围;
(Ⅱ)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an},a1=1,a6=32,Sn是等差数列{bn}的前n项和,b1=3,S5=35.
(1)求数列{an},{bn}的通项公式;
(2)设cn=an+bn , 求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcosx﹣sin2x﹣3cos2x+1.
(1)求函数y=f(x)的单调递增区间;
(2)若函数y=f(x)在区间[0,a]上恰有3个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,给出的是计算 + + +…+ 的值的程序框图,其中判断框内可填入的是(
A.i≤2 021?
B.i≤2 019?
C.i≤2 017?
D.i≤2 015?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测某种产品的质量(单位:千克),抽取了一个容量为N的样本,整理得到的数据作出了频率分布表和频率分布直方图如图:

分组

频数

频率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合计

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求频率分布直方图中d的值;
(Ⅲ)从该产品中随机抽取一件,试估计这件产品的质量少于25千克的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个算法的流程图,则输出的a值为(
A.511
B.1023
C.2047
D.4095

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(cosα,sinα),设 = +t (t为实数).
(1)若 ,求当| |取最小值时实数t的值;
(2)若 ,问:是否存在实数t,使得向量 和向量 的夹角为 ,若存在,请求出t;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案