【题目】已知关于的一次函数.
(1)设集合和,分别从集合和中随机取一个数作为和,求函数是增函数的概率;
(2)实数满足条件,求函数的图象经过第一、二、三象限的概率.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率为,点在椭圆C上.
(1)求椭圆C的方程;
(2)设动直线与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与相交两点,(两点均不在坐标轴上),且使得直线, 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.
(1)求椭圆的方程式;
(2)已知动直线与椭圆相交于两点.
①若线段中点的横坐标为,求斜率的值;
②已知点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照,…,分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中的值;
(2)若该市有110万居民,估计全市居民中月均用水量不低于3吨的人数,请说明理由;
(3)估计居民月均用水量的中位数(精确到0.01)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2-a-lnx,其中a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当时,恒成立,求a的取值范围.(其中,e=2.718…为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.
(1)求椭圆的标准方程;
(2)设,过椭圆左焦点的直线交于、两点,若对满足条件的任意直线,不等式()恒成立,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com