精英家教网 > 高中数学 > 题目详情

【题目】为平面直角坐标系xOy中的点集,从中的任意一点Px轴、y轴的垂线,垂足分别为M,N,记点M的横坐标的最大值与最小值之差为x(),点N的纵坐标的最大值与最小值之差为y().若是边长为1的正方形,给出下列三个结论:

x(Q)的最大值为

x(Q)+y(Q)的取值范围是

x(Q)-y(Q)恒等于0.

其中所有正确结论的序号是_________

【答案】①②③.

【解析】

易得与正方形的位置无关,故可以考虑将正方形确定在原点,再绕着原点旋转分析所有情况即可.

如图由题易得与正方形的位置无关,故将正方形确定在原点,则只需考虑当正方形绕着原点旋转的所有情况即可.此时对角线长.当正方形边均平行于坐标轴时取最小值.

对①,,故①正确

对②, ,故②正确.

对③,因为,,故③正确.

故答案为:①②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆的参数方程为(其中为参数),以原点为极点,轴非负半轴为极轴建立极坐标系,则曲线的极坐标方程为.

1)求圆的普通方程与的直角坐标方程;

2)点是曲线上一点,由向圆引切线,切点分别为,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求单调区间与极值;

2)当函数有两个极值点时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市管辖的海域内有一圆形离岸小岛,半径为1公里,小岛中心O到岸边AM的最近距离OA2公里.该市规划开发小岛为旅游景区,拟在圆形小岛区域边界上某点B处新建一个浴场,在海岸上某点C处新建一家五星级酒店,在A处新建一个码头,且使得ABAC满足垂直且相等,为方便游客,再建一条跨海高速通道OC连接酒店和小岛,设.

1)设,试将表示成的函数;

2)若OC越长,景区的辐射功能越强,问当为何值时OC最长,并求出该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为.

1)若对任意恒成立,求实数的取值范围;

2)若函数的极值为正数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)求的单调区间;

(Ⅱ)当时,试判断零点的个数;

(Ⅲ)当时,若对,都有)成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2,BC=6.

(1)求证:BD平面PAC; (2)求二面角P-BD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程

(2)射线与曲线分别交于两点(异于原点),定点的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)过点.

1)求椭圆的方程;

2)设过椭圆的右焦点,且倾斜角为的直线和椭圆交于两点,对于椭圆上任一点,若,求的最大值.

查看答案和解析>>

同步练习册答案