ij¸ßУµÄ×ÔÖ÷ÕÐÉú¿¼ÊÔÉèÖÃÁË×Ô¼ö¡¢±ÊÊÔºÍÃæÊÔÈý¸ö»·½Ú£¬²¢¹æ¶¨Ä³¸ö»·½Úͨ¹ýºó²ÅÄܽøÈëÏÂÒ»»·½Ú£¬ÇÒÈý¸ö»·½Ú¶¼Í¨¹ý²ÅÄܱ»Â¼È¡£®Ä³Ñ§ÉúAÈý¸ö»·½ÚÒÀ´Îͨ¹ýµÄ¸ÅÂÊ×é³ÉÒ»¸ö¹«²îΪ
1
8
µÄµÈ²îÊýÁУ¬ÇÒµÚÒ»¸ö»·½Ú²»Í¨¹ýµÄ¸ÅÂʳ¬¹ý
1
2
£¬µÚÒ»¸ö»·½Úͨ¹ýµ«µÚ¶þ¸ö»·½Ú²»Í¨¹ýµÄ¸ÅÂÊΪ
5
32
£¬¼Ù¶¨Ã¿¸ö»·½ÚѧÉúÊÇ·ñͨ¹ýÊÇÏ໥¶ÀÁ¢µÄ£®
£¨¢ñ£©ÇóѧÉúA±»Â¼È¡µÄ¸ÅÂÊ£»
£¨¢ò£©¼ÇѧÉúAͨ¹ýµÄ»·½ÚÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨¢ñ£©ÉèµÚÒ»¡¢¶þ¡¢Èý¹Øͨ¹ýµÄ¸ÅÂÊÒÀ´ÎÊÇa£¬a+
1
8
£¬a+
1
4
£¬ÓÉÌâÒâÖª
1-a£¾
1
2
a[1-(a+
1
8
)]=
5
32
£¬ÓÉ´ËÄÜÇó³öa£¬´Ó¶øÄÜÇó³öѧÉúA±»Â¼È¡µÄ¸ÅÂÊ£®
£¨¢ò£©ÓÉÌâÒâÖª¦ÎµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öP£¨¦Î=0£©£¬P£¨¦Î=1£©£¬P£¨¦Î=2£©£¬P£¨¦Î=3£©£®ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍE¦Î£®
½â´ð£º ½â£º£¨¢ñ£©ÉèµÚÒ»¡¢¶þ¡¢Èý¹Øͨ¹ýµÄ¸ÅÂÊÒÀ´ÎÊÇa£¬a+
1
8
£¬a+
1
4
£¬
ÔòÓÉÌâÒâÖª
1-a£¾
1
2
a[1-(a+
1
8
)]=
5
32
£¬
½âµÃa=
1
4
£¬
¡àѧÉúA±»Â¼È¡µÄ¸ÅÂÊp=
1
4
¡Á
3
8
¡Á
1
2
=
3
64
£®
£¨¢ò£©ÓÉÌâÒâÖª¦ÎµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
P£¨¦Î=0£©=1-
1
4
=
3
4
£¬
P£¨¦Î=1£©=
1
4
¡Á[1-(
1
4
+
1
8
)]
=
5
32
£¬
P£¨¦Î=2£©=
1
4
¡Á(
1
4
+
1
8
)¡Á[1-(
1
4
+
1
4
)]
=
3
64
£¬
P£¨¦Î=3£©=
1
4
¡Á(
1
4
+
1
8
)¡Á(
1
4
+
1
4
)
=
3
64
£®
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
¦Î  0 1 2 3
P  
3
4
 
5
32
 
3
64
 
3
64
¡àE¦Î=0¡Á
3
4
+1¡Á
5
32
+2¡Á
3
64
+3¡Á
3
64
=
25
64

¦Î  0 1 2 3
P  
3
4
 
5
32
 
3
64
 
3
64
¡àE¦Î=0¡Á
3
4
+1¡Á
5
32
+2¡Á
3
64
+3¡Á
3
64
=
25
64
£®
µãÆÀ£º±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬ÔÚÀúÄê¸ß¿¼Öж¼ÊDZؿ¼ÌâÐÍ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¦Î¡«N£¨0£¬62£©£¬ÇÒP£¨0¡Ü¦Î¡Ü2£©=0.2£¬ÔòP£¨¦Î£¼-2£©µÈÓÚ£¨¡¡¡¡£©
A¡¢0.1B¡¢0.2
C¡¢0.3D¡¢0.4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬Èôa=1£¬b=2£¬cos£¨A+B£©=
1
4
£¬ÔòcµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒÂú×ã2an-Sn=1£¬n¡ÊN*£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½ÏîanºÍan+1Ö®¼ä²åÈën¸öÊý£¬Ê¹Õân+2¸öÊý¹¹³ÉµÈ²îÊýÁУ¬¼ÇÆ乫²îΪdn£»ÀýÈ磺ÔÚa1ºÍa2Ö®¼ä²åÈë1¸öÊý£¬Ê¹Õâ3¸öÊý³ÉµÈ²îÊýÁУ¬¼Ç¹«²îΪd1£»ÔÚa2ºÍa3Ö®¼ä²åÈë2¸öÊý£¬Ê¹Õâ4¸öÊý³ÉµÈ²îÊýÁУ¬¼Ç¹«²îΪd2£»¡­ÒÔ´ËÀàÍÆ
£¨i£©Çó³ödnµÄ±í´ïʽ£¨ÓÃn±íʾ£©
£¨ii£©°´ÕÕÒÔÉϹæÔò²åÈëÊýºó£¬ÒÀ´ÎÅÅÁй¹³ÉеÄÊýÁÐ{bn}£¬Çób2014µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}£¬{bn}Âú×ãa1=
1
4
£¬an+bn=1£¬bn+1=
bn
1-an2
£¨n¡ÊN*£©£®
£¨1£©Çób1£¬b2£¬b3£¬b4£»
£¨2£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨3£©ÉèSn=a1a2+a2a3+¡­+anan+1£¬Èô²»µÈʽ4aSn£¼bn¶Ôn¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÕýÊýÊýÁÐ{an}£¨n¡ÊN*£©ÖУ¬SnΪ{an}µÄÇ°nÏîºÍ£¬Èôµã£¨an£¬Sn£©ÔÚº¯Êýy=
c2-x
c-1
µÄͼÏóÉÏ£¬ÆäÖÐcΪÕý³£Êý£¬ÇÒc¡Ù1£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÊÇ·ñ´æÔÚÕýÕûÊýM£¬Ê¹µÃµ±n£¾Mʱ£¬a1•a3•a5¡­a2n-1£¾a101ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öʹ½áÂÛ³ÉÁ¢µÄcµÄÈ¡Öµ·¶Î§ºÍÏàÓ¦µÄMµÄ×îСֵ£®
£¨¢ó£©Èô´æÔÚÒ»¸öµÈ²îÊýÁÐ{bn}£¬¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐb1an+b2an-1+b3an-2+¡­+bn-1a2+bna1=3n-
5
3
n-1
³ÉÁ¢£¬Çó{bn}µÄͨÏʽ¼°cµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¡÷ABCÖУ¬a£¬b£¬cΪ½ÇA£¬B£¬CËù¶ÔµÄ±ß£¬ÇÒb£¨3b-c£©cosA=acosC£®
£¨¢ñ£©ÇócosAµÄÖµ£»
£¨¢ò£©Èô¡÷ABCµÄÃæ»ýΪ2
2
£¬²¢ÇÒ±ßABÉϵÄÖÐÏßCMµÄ³¤Îª
17
2
£¬Çób£¬cµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôa£¾0£¬b£¾0£¬ÇÒº¯Êýf£¨x£©=4x3-ax2-2bx+2ÔÚx=1´¦Óм«Öµ£¬Ôò
6
a
+
a
b
µÄ×îСֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ʵÊýa£¾0ÇÒa¡Ù1£¬º¯Êýf£¨x£©=
ax   x£¼3
ax+b  x¡Ý3 
£¬ÈôÊýÁÐ{an}Âú×ãan=f£¨n£©£¨n¡ÊN*£©£¬ÇÒ{an}ÊǵȲîÊýÁУ¬Ôòa+b=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸