精英家教网 > 高中数学 > 题目详情
如图,椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,椭圆C1右焦点到右准线的距离为
2
4
,椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B.
(1)求椭圆C1的方程;
(2)若直线EA、EB分别与椭圆C1相交于另一个交点为点P、M.
①求证:直线MP经过一定点;
②试问:是否存在以(m,0)为圆心,
3
2
5
为半径的圆G,使得直线PM和直线AB都与圆G相交?若存在,请求出所有m的值;若不存在,请说明理由.
(1)由圆C2将椭圆C1的长轴三等分,∴2b=
1
3
•2a
,则a=3b.
c=
a2-b2
=2
2
b

又椭圆C1右焦点到右准线的距离为
2
4

a2
c
-c=
b2
c
=
2
4
,∴b=1,则a=3,
∴椭圆方程为
x2
9
+y2=1

(2)①由题意知直线PE,ME的斜率存在且不为0,设直线PE的斜率为k,则PE:y=kx-1,
y=kx-1
x2
9
+y2=1
x=
18k
9k2+1
y=
9k2-1
9k2+1
x=0
y=-1

P(
18k
9k2+1
9k2-1
9k2+1
)

-
1
k
去代k,得M(
-18k
k2+9
9-k2
k2+9
)

kPM=
9k2-1
9k2+1
-
9-k2
k2+9
18k
9k2+1
+
18k
k2+9
=
k2-1
10k

∴PM:y-
9-k2
k2+9
=
k2-1
10k
(x+
18k
k2+9
)
,即y=
k2-1
10k
x+
4
5

∴直线PM经过定点T(0,
4
5
)

②由
y=kx-1
x2+y2=1
x=
2k
1+k2
y=
k2-1
k2+1
x=0
y=-1

A(
2k
1+k2
k2-1
k2+1
)

则直线AB:y=
k2-1
2k
x

t=
k2-1
10k
,则t∈R,直线PM:y=tx+
4
5
,直线AB:y=5tx,
假设存在圆心为(m,0),半径为
3
2
5
的圆G,使得直线PM和直线AB都与圆G相交,
则(i)
|5tm|
1+25t2
3
2
5
,(ii)
|tm+
4
5
|
1+t2
3
2
5

由(i)得25t2(m2-
18
25
)<
18
25
对t∈R恒成立,则m2
18
25

由(ii)得,(m2-
18
25
)t2+
8
5
mt-
2
25
<0
对t∈R恒成立,
m2=
18
25
时,不合题意;当m2
18
25
时,△=(
8
5
m)2-4(m2-
18
25
)(-
2
25
)<0
,得m2
2
25
,即-
2
5
<m<
2
5

∴存在圆心为(m,0),半径为
3
2
5
的圆G,使得直线PM和直线AB都与圆G相交,所有m的取值集合为(-
2
5
2
5
)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

点P(4,4),圆C:(x-1)2+y2=5与椭圆E:
x2
18
+
y2
2
=1
有一个公共点A(3,1),F1、F2分别是椭圆左、右焦点,直线PF1与圆C相切.设Q为椭圆E上的一个动点,求
AP
AQ
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A、B是椭圆
x2
4
+
y2
3
=1
的左、右顶点,椭圆上异于A、B的两点C、D和x轴上一点P,满足
AP
=
1
3
AD
+
2
3
AC

(1)设△ADP、△ACP、△BCP、△BDP的面积分别为S1、S2、S3、S4,求证:S1S3=S2S4
(2)设P点的横坐标为x0,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且
|CD|
|ST|
=2
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),当|
PA
-
PB
|<
2
5
3
时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知m>1,直线l:x-my-
m2
2
=0,椭圆C:
x2
m2
+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,线段MN的两个端点M、N分别在x轴、y轴上滑动,|MN|=5,点P是线段MN上一点,且
MP
=
2
3
PN
,点P随线段MN的运动而变化.
(1)求点P的轨迹C的方程;
(2)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设
OS
=
OA
+
OB
,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0),它们所表示的曲线可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的渐近线方程为y=±
3
x
,O为坐标原点,点M(
5
3
)
在双曲线上.
(1)求双曲线C的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
,求|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(
3
,0)
(1)求双曲线C的方程;
(2)若直线l:y=kx+
2
与双曲线C恒有两个不同的交点A和B,且
OA
OB
>2(其中O为原点).求k的取值范围.

查看答案和解析>>

同步练习册答案