精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+(1-a)x2-a(a+2)x(a∈R),f′(x)为f(x)的导数.
(1)当a=-3时,求y=f(x)的单调区间和极值;
(2)设g(x)=
19
6
x-
1
3
,是否存在实数x1=-
1
3
,对于任意的x1∈[-1,1],存在x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立?若存在,求出
1
3
≤h(x1)≤6
的取值范围;若不存在,说明理由.
分析:(1)当a=-3时,f(x)=x3+4x2-3x,f'(x)=3x2+8x-3,令f'(x)=0得:x1=-3、x2=
1
3
,由此能求出y=f(x)的单调区间和极值.
(2)在[0,2]上,g(x)=
19
6
x-
1
3
是增函数,故对于x2∈[0,2],g(x2)∈[-
1
3
,6]
.设h(x1)=f′(x1)+2ax1=3
x
2
1
+2x1-a(a+2),x1∈[-1,1]
.h'(x1)=6x1+2,由h'(x1)=0,得x1=-
1
3
.要使对于任意的x1∈[-1,1],存在x2∈[0,2]使得h(x1)=g(x2)成立,只需在[-1,1]上,-
1
3
≤h(x1)≤6
,由此能求出实数a的范围.
解答:解:(1)当a=-3时,f(x)=x3+4x2-3x,f'(x)=3x2+8x-3,
令f'(x)=0得:x1=-3、x2=
1
3

所以f(x)在(-3,
1
3
)
单调递减.在(-∞,-3),(
1
3
,+∞)
单调递增   
所以f(x)极大=f(-3)=18,f(x)极小=f(
1
3
)=-
14
27

(2)在[0,2]上g(x)=
19
6
x-
1
3
是增函数,故对于x2∈[0,2],g(x2)∈[-
1
3
,6]

h(x1)=f′(x1)+2ax1=3
x
2
1
+2x1-a(a+2),x1∈[-1,1]
.h'(x1)=6x1+2,
由h'(x1)=0,得x1=-
1
3

要使对于任意的x1∈[-1,1],存在x2∈[0,2]使得h(x1)=g(x2)成立,只需在[-1,1]上,
-
1
3
≤h(x1)≤6

在(-1,-
1
3
)上h′(x1)<0,在(-
1
3
,1)上h′(x1)>0,
x1=-
1
3
时,h(x1)有极小值h(-
1
3
)=-
1
3
-a2-2a

∵h(-1)=1-a2-2a,h(1)=5-a2-2a,
∵在[-1,1]上,h(x1)只有一个极小值,
故h(x1)的最小值为-
1
3
-a2-2a

1-a2-2a≤6
5-a2-2a≤6
-
1
3
-a2-2a≥-
1
3

解得-2≤a≤0.
点评:本题考查函数的单调区间和极值的求法,考查满足条件的实数的取值范围的求法.解题时要认真审题,仔细解答,注意导数的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案