精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

1时,求函数上的最大值和最小值;

2时,是否存在实数,当是自然对数底时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;

【答案】1最大值是最小值为2

【解析】

试题分析:1先求出导函数,在求出的单调区间,进而求得极大值与极小值,比较端点值可得最大值与最小值;2,分三种情况讨论函数的单调性,进而求出函数的最小值表示,令其等于即可求出的值

试题解析: 1时,,且

所以函数上单调递增;,函数上单调递减,

所以函数在区间仅有极大值点,故这个极大值点也是最大值点,

故函数在最大值是

,故

故函数在上的最小值为

2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点为,离心率为,点在椭圆上,在线段上,且的周长等于

1求椭圆的标准方程;

2过圆上任意一点作椭圆的两条切线与圆交于点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:

(月)

(千克)

(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图.

(2)请根据上表提供的数据,用最小二乘法求出变量关于变量的线性回归直线方程

(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克).

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果y=fx的定义域为R,对于定义域内的任意x,存在实数a使得fx+a=fx成立,则称此函数具有Pa性质给出下列命题:

函数y=sinx具有Pa性质

若奇函数y=fx具有P2性质,且f1=1,则f2015=1;

若函数y=fx具有P4性质,图象关于点1,0成中心对称,且在1,0上单调递减,则y=fx2,1上单调递减,在1,2上单调递增;

若不恒为零的函数y=fx同时具有P0性质P3性质,函数y=fx是周期函数

其中正确的是 写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】英州市育才中学对全体教师在教学中是否经常使用信息技术实施教学的情况进行了调查得到统计数据如下()

教师教龄

年以下

年至

年至

年及以上

教师人数

经常使用信息技术实施教学的人数

(1)求该校教师在教学中不经常使用信息技术实施教学的概率

(2)在教龄年以下,且经常使用信息技术教学的教师中任选人,其中恰有一人教龄在年以下的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线轴于,且为坐标原点.

(1)求椭圆的方程;

(2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,(1)求的值;(2)判断并证明函数的单调性;(3)是否存在这样的实数,使对一切恒成立,若存在,试求出取值的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公差不为零的等差数列中,已知,且依次成等比数列.数列满足,且.

(1)求数列 的通项公式;

(2)求数列的前项和为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线上点处的切线过点,求函数的单调减区间;

(2)若函数上无零点,求的最小值.

查看答案和解析>>

同步练习册答案