精英家教网 > 高中数学 > 题目详情
14.设函数y=sinx在区间$[t,t+\frac{π}{2}]$上的最大值为M(t),最小值为m(t),则M(t)-m(t)的最小值和最大值分别为(  )
A.1,2B.$1,\sqrt{2}$C.$1-\frac{{\sqrt{2}}}{2},1$D.$1-\frac{{\sqrt{2}}}{2},\sqrt{2}$

分析 根据当函数y=sinx在区间$[t,t+\frac{π}{2}]$上单调时,则M(t)-m(t)取得最大值,由此求得M(t)-m(t)的最大值;当区间$[t,t+\frac{π}{2}]$关于它的图象的对称轴对称时,M(t)-m(t)取得最小值,从而求得M(t)-m(t)的最小值.

解答 解:函数y=sinx在区间$[t,t+\frac{π}{2}]$上的最大值为M(t),最小值为m(t),
区间的长度为$\frac{π}{2}$,正好为函数的周期的$\frac{1}{4}$,
故当函数y=sinx在区间$[t,t+\frac{π}{2}]$上单调时,则M(t)-m(t)取得最大值.
不妨假设函数y=sinx在区间$[t,t+\frac{π}{2}]$上单调递增,
则M(t)-m(t)取得最大值为sin(t+$\frac{π}{2}$)-sint=cost-sint=$\sqrt{2}$cos(t+$\frac{π}{4}$)≤$\sqrt{2}$,
故M(t)-m(t)取得最大值为$\sqrt{2}$.
当区间$[t,t+\frac{π}{2}]$关于它的图象的对称轴对称时,M(t)-m(t)取得最小值,
此时,sin(t+$\frac{π}{4}$)=±1,不妨设 sin(t+$\frac{π}{4}$)=1,即t+$\frac{π}{4}$=2kπ+$\frac{π}{2}$,k∈Z,
即 t=2kπ+$\frac{π}{4}$,k∈Z,
则M(t)-m(t)取得最小值为sin(t+$\frac{π}{4}$)-sint=1-sin(2kπ+$\frac{π}{4}$)=1-$\frac{\sqrt{2}}{2}$,
故M(t)-m(t)的最小值和最大值分别为1-$\frac{\sqrt{2}}{2}$,$\sqrt{2}$,
故选:D.

点评 本题主要考查正弦函数的图象特征,正弦函数的单调性、图象的对称性的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知非空集合A={x|1-m≤x≤2m-1},B={x|-2<x≤5},若A∩B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一个无穷等比数列{an}中an>0,且若a2+a3+a4+…+a${\;}_{{n}_{\;}}$+…≤$\frac{{a}_{1}}{2}$,求公比q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.曲线 ρ=8sinθ和 ρ=-8cosθ?(ρ>0)的交点的极坐标是(4$\sqrt{2}$,$\frac{3π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.方程(lga+lgx)•(lga+2lgx)=4有两个小于1的正根α,β.
(1)若lgα+lgβ=-$\frac{9}{2}$,求a的值;
(2)若|lgα-lgβ|≤2$\sqrt{3}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,两个正方形ABCD和ADEF所在平面互相垂直,设M、分别是BD和AE的中点,
①AD⊥MN;      ②MN∥面CDE;
③MN∥CE;      ④MN、CE异面.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知四棱锥P-ABCD中,AD=2BC,且AD∥BC,点M,N分别是PB,PD中点,平面MNC交PA于Q.
(1)证明:NC∥平面PAB
(2)试确定Q点的位置,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,对于任意x∈R,同时满足条件f(x)=f(-x)和f(x+π)=f(x)的函数是(  )
A.f(x)=sinxB.f(x)=sin2xC.f(x)=cosxD.f(x)=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f(x)是定义在R上的函数,则“函数f(x)为偶函数”是“函数xf(x)为奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案