精英家教网 > 高中数学 > 题目详情

【题目】已知点是直角坐标平面内y轴及y轴的右侧的动点,点到直线是正常数)的距离为,到点的距离为,且.

1)求动点所在曲线的方程;

2)直线过点且与曲线交于不同两点,分别过点作直线的垂线,对应的垂足分别为,记是(2)中的点),,求的值.

【答案】1;(2

【解析】

(1) 设动点为,依据题意,有,可得动点P所在曲线C的方程;

2)由题意可知,当过点F的直线的斜率为0时,不合题意,故可设直线,联立方程组,可化为,则点的坐标满足.又,可得点.可算出,再代入面积中可得的值.

1)设动点为,依据题意,得.化简,得.因此,动点所在曲线的方程是:

2)由题意可知,当过点的直线的斜率为0时,不合题意,故可设直线.

得联立方程组可化为,则点的坐标满足.

,所以点.

.

所以,即为所求.

【点晴】

本题是考查了直线与抛物线位置关系的研究,以及设而不求的思想运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.

(Ⅰ) 求动圆圆心的轨迹C的方程;

(Ⅱ) 已知点B(1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, x轴是的角平分线, 证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点MN,过点Mx轴的垂线分别与直线OPON交于点AB,其中O为原点.

(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;

(Ⅱ)求证:A为线段BM的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列的公比为,前项和.

(1)求的取值范围;

(2)设,记的前项和为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年9月支付宝宣布在肯德基的KPRO餐厅上线刷脸支付,也即用户可以不用手机,单单通过刷脸就可以完成支付宝支付,这也是刷脸支付在全球范围内的首次商用试点.某市随机抽查了每月用支付宝消费金额不超过3000元的男女顾客各300人,调查了他们的支付宝使用情况,得到如下频率分布直方图:

若每月利用支付宝支付金额超过2千元的顾客被称为“支付宝达人”, 利用支付宝支付金额不超过2千元的顾客称为“非支付宝达人”.

(I)若抽取的“支付宝达人”中女性占120人,请根据条件完成上面的列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“支付宝达人”与性别有关.

(II)支付宝公司为了进一步了解这600人的支付宝使用体验情况和建议,从“非支付宝达人” “支付宝达人”中用分层抽样的方法抽取8人.若需从这8人中随机选取2人进行问卷调查,求至少有1人是“支付宝达人”的概率.

附:参考公式与参考数据如下

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点O为坐标原点,椭圆C:(a>b>0)的左、右焦点分别为F1,F2,离心率为,点I,J分别是椭圆C的右顶点、上顶点,IOJ的边IJ上的中线长为

(1)求椭圆C的标准方程;

(2)过点H(-2,0)的直线交椭圆C于A,B两点,若AF1⊥BF1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,N为圆C上的一动点,点D1,0),点MDN的中点,点P在线段CN上,且.

)求动点P表示的曲线E的方程;

)若曲线Ex轴的交点为,当动点PAB不重合时,设直线的斜率分别为,证明:为定值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9~12月某市邮政快递业务量完成件数较2017年9~12月同比增长25%,该市2017年9~12月邮政快递业务量柱形图及2018年9~12月邮政快递业务量结构扇形图如图所示,根据统计图,给出下列结论:

①2018年9~12月,该市邮政快递业务量完成件数约1500万件;

②2018年9~12月,该市邮政快递同城业务量完成件数与2017年9~12月相比有所减少;

③2018年9~12月,该市邮政快递国际及港澳台业务量同比增长超过75%,其中正确结论的个数为( )

A. 3

B. 2

C. 1

D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点.

求椭圆的标准方程

为椭圆的中线,点,过点的动直线交椭圆于另一点,直线上的点满足,求直线的交点的轨迹方程.

查看答案和解析>>

同步练习册答案