【题目】某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值,若某住户某月用电量不超过度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过度,则超出部分按议价(单位:元/度)计费,未超出部分按平价计费.为确定的值,随机调查了该市100户的月用电量,统计分析后得到如图所示的频率分布直方图.根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).
(1)若该市计划让全市70%的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值;
(2)在(1)的条件下,假定出台“阶梯电价”之后,月用电量未达度的住户用电量保持不变;月用电量超过度的住户节省“超出部分”的60%,试估计全市每月节约的电量.
【答案】(1)临界值的值为80(2)480000度
【解析】
(1)由频率分布直方图计算出各组频数,可得70%的用户正好在里面,从而确定;
(2)求出总共节省的用电量,由样本比例可估计出总用电量.
(1)由频率分布直方图,可算得各组数据对应的频率及频数,如下表:
分组 | ||||||
组频率 | 0.04 | 0.12 | 0.24 | 0.30 | 0.25 | 0.05 |
组频数 | 4 | 12 | 24 | 30 | 25 | 5 |
区间内的频率总和恰为0.7,由样本估计总体,可得临界值的值为80
(2)由(1)知,月用电量在内的70户住户在“阶梯电价”出台前后用电量不变,节电量为0度;
月用电量在内的25户住户,平均每户用电90度,超出部分为10度,根据题意,
每户每月节电度,25户每月共节电(度);
月用电量在内的5户住户,平均每户用电110度,超出部分为30度,根据题意,
每户每月节电(度),5户每月共节电(度).
故样本中100户住户每月共节电(度),
用样本估计总体,得全市每月节电量约为(度)
科目:高中数学 来源: 题型:
【题目】某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和.
(1)从,生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.
(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.
①已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元。若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?
②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.
(1)求直线和曲线的极坐标方程;
(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)已知点,直线与轴正半轴交于点,与曲线交于,两点,且,,成等比数列,求直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业质量检验员为了检测生产线上零件的情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:
(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);
(2)已知尺寸在上的零件为一等品,否则为二等品. 将这个零件尺寸的样本频率视为概率,从生产线上随机抽取个零件,试估计所抽取的零件是二等品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极点与直角坐标系的原点重合,极轴与轴的正半轴重合,曲线的极坐标方程是,直线的参数方程是(为参数).
(1)若,是圆上一动点,求点到直线的距离的最小值和最大值;
(2)直线与关于原点对称,且直线截曲线的弦长等于,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,
(1)求椭圆的方程;
(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com