【题目】已知函数,当,时,的值域为,,当,时,的值域为,,依此类推,一般地,当,时,的值域为,,其中、为常数,且,.
(1)若,求数列,的通项公式;
(2)若,问是否存在常数,使得数列满足?若存在,求的值;若不存在,请说明理由;
(3)若,设数列,的前项和分别为,,求.
【答案】(1)an=(n﹣1)m,bn=1+(n﹣1)m;(2)存在, k=;(3)
【解析】
(1)由递增,可得值域,进而得到,,由等差数列的通项公式,即可得到所求;
(2)由单调性求得的值域,,则,再由,运用等比数列的定义和通项公式,即可得到结论;
(3)运用函数的单调性,可得的值域,由作差,运用等比数列的定义和通项公式,结合等比数列的求和公式,化简整理即可得到所求.
解:(1)因为,当,时,为递增函数,
所以其值域为,,
于是,,
又,,则,;
(2)因为,,当,时,单调递增,
所以的值域为,,
由,则;
法一:假设存在常数,使得数列,得,则符合.
法二:假设存在常数,使得数列满足,当不符合.
当时,,,
则,
当时,,解得符合,
(3)因为,当,时,为递减函数,
所以的值域为,,
于是,,,
则,
因此是以为公比的等比数列,
又则有,
进而有.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+ax2+ax.
(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=4x+1平行,求实数a的值;
(2)若时,关于x的方程在(0,2]上恰有两个不相等的实数根,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{2n﹣1}的前n项1,3,7,…,2n﹣1组成集合(n∈N*),从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),记Sn=T1+T2+…+Tn,例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7,试写出Sn=__.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域是,且,,当时,.
(1)判断的奇偶性,并说明理由;
(2)求在区间上的解析式;
(3)是否存在整数,使得当时,不等式有解?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为F,短轴的两个端点分别为A、B,且,为等边三角形.
(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线与椭圆C交于另一点J,若,试求以线段为直径的圆的方程;
(3)已知是过点A的两条互相垂直的直线,直线与圆相交于两点,直线与椭圆C交于另一点R;求面积取最大值时,直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列前项和为
(1)若首项,且对于任意的正整数均有,(其中为正实常数),试求出数列的通项公式.
(2)若数列是等比数列,公比为,首项为,为给定的正实数,满足:①,且②对任意的正整数,均有;试求函数的最大值(用和表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com