【题目】已知函数.
(1)求函数在区间上的最大、最小值;
(2)求证:在区间上,函数的图象在函数的图象的下方.
【答案】(1)由已知,
当时,,
所以函数在区间上单调递增,
所以函数在区间上的最大、最小值分别为,,
所以函数在区间上的最大值为,最小值为;
(2)证明:设,则.
因为,所以,
所以函数在区间上单调递减,
又,所以在区间上,,即,
所以在区间上函数的图象在函数图象的下方.
【解析】
(1)求得函数的导数,得到函数的单调性,进而求解函数的最值;
(2)由题意,设,求得,利用导数求得函数的单调性和最小值,即作出证明.
解:(1)由f(x)=x2+ln x有f′(x)=x+,
当x∈[1,e]时,f′(x)>0,
所以f(x)max=f(e)=e2+1.
f(x)min=f(1)=.
(2)设F(x)=x2+ln x-x3,
则F′(x)=x+-2x2=,
当x∈[1,+∞)时,F′(x)<0,
且F(1)=-<0故x∈[1,+∞)时F(x)<0,
所以x2+ln x<x3,得证.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,定义域为[0,2π],g(x) 为f(x) 的导函数.
(1)求方程g(x)=0 的解集;
(2)求函数g(x) 的最大值与最小值;
(3)若函数F(x)=f(x)﹣ax 在定义域上恰有2个极值点,求实数a 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的茎叶图记录了甲、乙两组各5名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中用表示.
(1)若乙组同学投篮命中次数的平均数比甲组同学的平均数少1,求及乙组同学投篮命中次数的方差;
(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为16的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣5:不等式选讲
设函数f(x)=|2x﹣4|+|x+2|
(1)求函数y=f(x)的最小值;
(2)若不等式f(x)≥|a+4|﹣|a﹣3|恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:m∈R,且m+1≤0,q:x∈R,x2+mx+1>0恒成立,若p∧q为假命题且p∨q为真命题,则m的取值范围是__________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别是a、b、c,已知向量 =(cosA,cosB), =(a,2c﹣b),且 ∥ .
(1)求角A的大小;
(2)若a=4,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+ax2+bx,(a,b∈R).
(1)设a=1,f(x)在x=1处的切线过点(2,6),求b的值;
(2)设b=a2+2,求函数f(x)在区间[1,4]上的最大值;
(3)定义:一般的,设函数g(x)的定义域为D,若存在x0∈D,使g(x0)=x0成立,则称x0为函数g(x)的不动点.设a>0,试问当函数f(x)有两个不同的不动点时,这两个不动点能否同时也是函数f(x)的极值点?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com