精英家教网 > 高中数学 > 题目详情
1.已知全集U=R,集合A={x|x2-x<0,x∈R},B={0,1},则(  )
A.A∪B=AB.A∩B=BC.UB=AD.B⊆∁UA

分析 求出∁UA={x|x≤0或x≥1},即可得出结论.

解答 解:∵∁UA={x|x≤0或x≥1},B={0,1},
∴B⊆∁UA,
故选D.

点评 本题考查集合的关系与运算,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某中学有6名爱好篮球的高三男生,现在考察他们的投篮水平与打球年限的关系,每人罚篮10次,其打球年限与投中球数如下表:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$
(Ⅰ)求投中球数y关于打球年限x(x∈N,0≤x≤16)的线性回归方程,
(Ⅱ)若第6名同学的打球年限为11年,试估计他的投中球数(精确到整数).
学生编号12345
打球年限x/年35679
投中球数y/个23345

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知9x-12•3x+27≤0,求函数y=log22x-log2x+2的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.A={x|-5<x<2},B={x|x=y+1,y∈A},则A∩B={x|-4<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用0,1,…,199给200个零件编号,并用系统抽样的方法从中抽取10件作为样本进行质量检测,若第一段中编号为5的零件被取出,则第四段中被取出的零件编号为35.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知定义域为(-1,1),函数f(x)=-x3+3x且f(a-3)+f(9-a2)<0,则a的取值范围是(3,$\sqrt{10}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴是短轴的两倍,点P($\sqrt{3}$,$\frac{1}{2}$)在椭圆上,不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为k1、k、k2,且k1、k、k2恰好构成等比数列,记△AOB的面积为S.
(1)求椭圆C的方程;
(2)试判断|OA|2+|OB|2是否为定值?若是,求出这个值;若不是,请说明理由?
(3)求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合M={(x,y)|x2+y2=1},N={(x,y)|x2+y2=4},集合M与N的关系是(  )
A.M=NB.M⊆N
C.N⊆MD.M,N不存在包含关系

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线x=4y2上一点P(m,1),焦点为F.则|PF|=(  )
A.m+1B.2C.$\frac{63}{16}$D.$\frac{65}{16}$

查看答案和解析>>

同步练习册答案