精英家教网 > 高中数学 > 题目详情
11.已知圆C的圆心在坐标原点,且与直线l1:x-y-2$\sqrt{2}$=0相切
(1)求直线l2:4x-3y+5=0被圆C所截得的弦AB的长.
(2)若与直线l1垂直的直线l与圆C交于不同的两点P,Q,若∠POQ为钝角,求直线l纵截距的取值范围.
(3)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N求直线MN的方程.

分析 (1)先求出圆C的标准方程,再求直线l2:4x-3y+5=0被圆C所截得的弦AB的长;
(2)设直线l的方程为:y=-x+b,联立圆C方程,运用判别式大于0,韦达定理以及向量的数量积的坐标表示,化简解不等式,即可得到所求范围;
(3)求出以G点为圆心,线段GM长为半径的圆G方程,与圆C的标准方程相减,即可求直线MN的方程.

解答 解:(1)由题得:原点到直线l1:x-y-2$\sqrt{2}$=0的距离为圆的半径2,故圆C的方程为x2+y2=4
又圆心到直线l2:4x-3y+5=0的距离d=$\frac{5}{\sqrt{16+9}}$=1
∴|AB|=2$\sqrt{4-1}$=2$\sqrt{3}$…(4分)
(2)设P(x1,y1),Q(x2,y2),直线L的方程为:y=-x+b,
联立x2+y2=4得:2x2-2bx+b2-4=0,
由△=(-2b)2-8(b2-4)>0,得b2<8,
且x1+x2=b,x1x2=$\frac{{b}^{2}-4}{2}$
∵∠POQ是钝角,∴$\overrightarrow{OP}$•$\overrightarrow{OQ}$<0
即x1x2+y1y2<0,且$\overrightarrow{OP}$与$\overrightarrow{OQ}$不是反向向量,
而y1y2=(-x1+b)(-x2+b)
∴x1x2+y1y2=2x1x2-b(x1+x2)+b2<0
代入韦达定理,解之得-2<b<2,
而当$\overrightarrow{OP}$与$\overrightarrow{OQ}$反向时,b=0,
故所求直线纵截距的范围是(-2,0)∪(0,2)…(8分)
(3)|OG|=$\sqrt{10}$,|GM|=$\sqrt{6}$
故以G为圆心,GM的长为半径的圆G方程为(x-1)2+(y-3)2=6
又圆C方程为:x2+y2=4(2)
由(1)-(2)得直线MN方程为x+3y-4=0…(12分)

点评 本题考查圆的方程,考查直线与圆的位置关系,考查圆与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某校高三期末统一测试,随机抽取一部分学生的数学成绩分组统计如下表:
分组频数频率
(0,30]30.03
(30,60]30.03
(60,90]370.37
(90,120]mn
(120,150]150.15
合计MN
(Ⅰ)若全校参加本次考试的学生有600人,试估计这次测试中我区成绩在90分以上的人数;
(Ⅱ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知非空集合S⊆{1,2,3,4,5,6}满足:若a∈S,则必有7-a∈S,问这样的集合S有7个;请将该问题推广到一般情况:已知非空集合A⊆{1,2,…,n}满足:若a∈A,则必有n+1-a∈A;当n为偶数时,这样的集合A有${2^{\frac{n}{2}}}-1$个;当n为奇数时,这样的集合A有${2^{\frac{n+1}{2}}}-1$个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数$f(x)=lg(x+\sqrt{1+m{x^2}})$是奇函数,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某社团组织50名志愿者参加社会公益活动,帮助那些需要帮助的人,各位志愿者根据各自的实际情况,选择了两个不同的活动项目,相关的数据如下表所示:
宣传慰问义工总计
男性志愿者111627
女性志愿者15823
总计262450
(1)先用分层抽样的方法在做义工的志愿者中随机抽取6名志愿者,再从这6名志愿者中又随机抽取2名志愿者,设抽取的2名志愿者中女性人数为ξ,求ξ的数学期望.
(2)如果“宣传慰问”与“做义工”是两个分类变量,那么你有多大把握认为选择做宣传慰问与做义工是与性别有关系的?
附:2×2列联表随机变量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.P(K2≥k)与k对应值表:
参考数据P(K2≥k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.$f(x)=\left\{\begin{array}{l}1,\;\;\;\;\;x>0\\ 0,\;\;\;\;\;x=0\\-1,\;\;x<0,\;\;\end{array}\right.$g(x)=x2f(x-1),
(1)求g(x)的解析式;
(2)画出函数g(x)的图象,并写出其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}是公差不为0的等差数列,{bn}是等比数列,且b1=a1=3,b2=a3,b3=a9
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设${c_n}={log_3}b_n^5-32$,求数列{|cn|}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,执行其程序框图,则输出S的值等于(  )
A.15B.105C.245D.945

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线y=a与函数y=|$\frac{lnx+1}{{x}^{3}}$|的图象恰有3个不同的交点,则实数a的取值范围为(  )
A.{$\frac{{e}^{2}}{3}$}B.(0,$\frac{{e}^{2}}{3}$)C.($\frac{{e}^{2}}{3}$,e)D.($\frac{1}{e}$,1)∪{$\frac{{e}^{2}}{3}$}

查看答案和解析>>

同步练习册答案