精英家教网 > 高中数学 > 题目详情
设{an}是公比为q的等比数列,其前n项的积为Tn,并且满足条件:a1>1,a99a100-1>0,
a99-1
a100-1
<0
.给出下列结论:①0<q<1;②T198<1;③a99a101<1;④使Tn<1成立的最小的自然数n等于199.其中正确结论的编号是(  )
A、①②③B、①④
C、②③④D、①③④
分析:由已知中数列{an}是公比为q的等比数列,其前n项的积为Tn,并且满足条件:a1>1,a99a100-1>0,
a99-1
a100-1
<0
.我们可得a99>1,a100<1,结合等数列的性质对题目中的四个结论逐一进行判断,即可得到答案.
解答:解:∵a99a100-1>0,
∴a12•q197>1,
∴(a1•q982>1
∵a1>1,
∴q>0,
又∵
a99-1
a100-1
<0

∴a99>1,a100<1.
∴0<q<1,即①正确
又∵T198=a1198•q1+2+…+197=(a99•a10099>1
∴②不正确
a99a101=a1002<1
∴③正确;
满足Tn=a1q
n-1
2
<1的最小自然数n满足
n-1
2
=99,即n=199,∴④正确.
∴正确的为①③④
故选D
点评:本题考查的知识点是等比数列的性质,其中根据已知条件得到a99>1,a100<1,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若干个能惟一确定一个数列的量称为该数列的“基本量”.设{an}是公比为q的无穷等比数列,下列{an}的四组量中,一定能成为该数列“基本量”的是第
 
组.(写出所有符合要求的组号)
①S1与S2;②a2与S3;③a1与an;④q与an.(其中n为大于1的整数,Sn为{an}的前n项和.)

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比为q的等比数列,其前项积为,并满足条件a1>1,a99a100-1>0,
a99-1a100-1
<0
,给出下列结论:(1)0<q<1;(2)T198<1;(3)a99a101<1;(4)使Tn<1成立的最小自然数n等于199,其中正确的编号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

15、设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=
1

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比为 q的等比数列,且a1,a3,a2成等差数列.
(1)求q的值;
(2)设{bn}是以2为首项,q为公差的等差数列,求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区二模)设{an}是公比为q的等比数列,首项a1=
1
64
,对于n∈N*bn=log
1
2
an
,当且仅当n=4时,数列{bn}的前n项和取得最大值,则q的取值范围为(  )

查看答案和解析>>

同步练习册答案